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Tempered Distributions

Homework Problems

42. Solving PDEs via the Fourier transform
Assume f ∈ L1(R2) is such that also its Fourier transform f̂ is integrable. Solve the PDE

∂2u

∂x21
+ 2

∂2u

∂x22
+ 3

∂u

∂x1
− 4u = f

on R2 using the Fourier transform, and discuss the existence of the solution u.

Solution:
If u and all derivatives up to second order are integrable, we can alternatively solve the equation

F
(
∂2u

∂x21
+ 2

∂2u

∂x22
+ 3

∂u

∂x1
− 4u

)
=

(
−ξ21 − 2ξ22 + i3ξ1 − 4

)
û = f̂ .

The polynomial P (ξ) := −ξ21 − 2ξ22 + i3ξ1 − 4 has no real zeros, and thus 1/P is bounded. Hence,
we can solve for û and Fourier back-transform,

u(x) =
(
F−1

(
f̂/P

))
(x) = 2π

(
F−1(1/P)

)
∗ f(x).

The function u exists, because f̂ ∈ L1(R2) by assumption so that also f̂/P is integrable,

∥∥f̂/P∥∥
1
=

∫
R2

dξ |f̂(ξ)|
|P (ξ)|

≤ sup
ξ∈R2

∣∣P (ξ)
∣∣−1 ∥∥f̂∥∥

1
< ∞.
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43. Computations involving distributions (38 points)
Consider the following tempered distributions L ∈ S ′(R),

(L,φ) :=

∫
R
dxL(x)φ(x) ∀φ ∈ S(R),

where

(i) L = δ(x) (ii) L = x2 (iii) L = δ′a(x) := δ′(x− a), a ∈ R, (iv) L = |x| .

(a) Show that L is continuous.
(b) Compute the first two distributional derivatives of L.
(c) For (i)–(iii) compute the distributional Fourier transform of L.

Solution:
In what follows, φ is always an arbitrary S(R) function. To answer (a), we use the boundedness
criterion from Proposition 7.2.2, a linear function L : S(Rd) −→ C is bounded if and only if∣∣(L,φ)∣∣ ≤ C

∑
|a|,|α|≤N

∥f∥aα

holds for some C > 0 and N ∈ N0. Alternatively, the right-hand side could be bounded by
Cmax|a|,|α|≤N∥f∥aα
(i) (a) δ is clearly linear and since |δ(φ)| ≤ ∥φ∥00, the Dirac distribution is also continuous. [1]

(b) Let φ ∈ S(R). By definition first and second derivative are given by(
δ′, φ

)
= (−1)

(
δ, φ′) = −φ′(0) [1](

δ′′, φ
)
= (−1)2

(
δ, φ′′) = +φ′′(0). [1]

(c) One can compute the Fourier transform explicitly:(
Fδ, φ

) [1]
=

(
δ,Fφ

)
= (Fφ)(0) =

1√
2π

∫
R
dxφ(x)

[1]
=

(
(2π)−

1/2, φ
)

Hence, the Fourier transform of δ is the constant function (2π)−1/2.
(ii) (a) Since φ is a Schwartz function, x2φ is integrable, and we have∣∣(x2, φ)∣∣ ≤ ∫

R
dxx2 |φ(x)| =

∥∥x2 φ∥∥
L1(R), [1]

and thanks to Lemma 7.1.3 in the lecture notes, we can estimate theL1(R)normby finitely
many seminorms. This means x2 defines a tempered distribution. [1]

(b) Using partial integration, we obtain the first distributional derivative:(
d
dxx

2 , φ
)

[1]
= −

(
x2, d

dxφ
)
= −

∫
R
dxx2 φ′(x)

[1]
= −

[
x2 φ(x)

]+∞

−∞
+

∫
R
dx

(
d
dxx

2
)
φ(x) =

∫
R
dx 2xφ(x) [1]

=
(
2x, φ

)
.
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The boundary terms vanish as φ decays to 0 faster than any polynomial. Hence, the dis-
tributional derivative coincides with the ordinary derivative.
The second derivative is computed analogously:(

d2
dx2x

2 , φ
)
=

(
d
dx2x , φ

)
= −

(
2x, φ′) [1]

=

∫
R
dx 2xφ′(x)

= −
[
2xφ(x)

]+∞

−∞
+

∫
R
dx

(
d
dx2x

)
φ(x)

[1]
=

(
2, φ

)
.

(c) The Fourier transform of x2 in the sense of functions does not exist. Nevertheless, we can
compute its distributional Fourier transform:(

Fx2, φ
) [1]
=

(
x2,Fφ

)
=

∫
R
dxx2 (Fφ)(x)

[1]
=

∫
R
dx

(
F(−i)2∂2

xφ
)
(x)

= −
(
1 , F∂2

xφ
)

[1]
=

(
−F1 , ∂2

xφ
)

[1]
=

(
−
√
2π δ, ∂2

xφ
)

[1]
=

(
−
√
2π δ′′, φ

)
(iii) (a) The tempered distribution δ′a is defined as

(δ′a, φ) = (−1) (δa, φ
′) = −

∫
R
dx δ(x− a)φ′(x) = −φ′(a). [1]

Hence, we can estimate
∣∣δ′a(φ)∣∣ ≤ ∥φ∥01 and δ′a is a tempered distribution. [1]

(b) ( d
dxδ

′
a, φ

)
= (−1)

(
δ′a, φ

′) = (−1)2
(
δa, φ

′′) = +φ′′(a) [1]( d2
dx2 δ

′
a, φ

)
= (−1)2

(
δ′a, φ

′′) = (−1)3
(
δa, φ

′′′) = −φ′′′(a) [1]

(c) (
Fδ′a, φ

)
=

(
δ′a,Fφ

) [1]
= −

(
δa,

d
dxFφ

) [1]
= +

(
δa, iF(xφ)

)
= i

(
F(xφ)

)
(a)

[1]
=

i√
2π

∫
R
dx e−iax xφ(x)

[1]
=

(
i(2π)−1/2 e−iax x , φ

)
(iv) (a) Since the growth of |x| is polynomially bounded, also |x| φ is integrable and we obtain

with the help of Lemma 7.1.3:∣∣(|x| , φ)∣∣ [1]

≤
∫
R
dx

∣∣xφ(x)∣∣ [1]
=

∥∥xφ∥∥
L1(R)

[1]

≤ C1

∥∥xφ∥∥
00

+ C2 max
j≤N

∥∥xφ∥∥
j0

[1]

≤ C1 ∥φ∥10 + C2 max
j≤N

∥φ∥j+1,0

Hence, |x| defines a tempered distribution.
(b) The function |x| is differentiable everywhere but at the origin. We conjecture that the

weak derivative is given by

d
dx |x| = sgn(x) :=


+1 x > 0

0 x = 0

−1 x < 0
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Let φ ∈ S(R). We write
( d
dx |x| , φ

)
as integral and split it up at x = 0,(

d
dx |x| , φ

)
[1]
= −

(
|x| , φ′) = −

∫
R
dx |x| φ′(x)

[1]
= −

∫ 0

−∞
dx (−x)φ′(x)−

∫ +∞

0
dx (+x)φ′(x).

After partial integration the right-hand side simplifies to

. . .
[1]
=

∫ 0

−∞
dx (−1)φ(x) +

∫ +∞

0
dx (+1)φ(x)

[1]
=

∫
R
dx sgn(x)φ(x)

[1]
=

(
sgn, φ

)
.

Note that the boundary terms at±∞ vanish.
We could have defined sgn arbitrarily at x = 0, because the integral does not change if we
modify sgn on a set of measure zero.
The second derivative is computed analogously by splitting up the integral at 0 and using
the Fundamental Theorem of Calculus:(

d
dxsgn , φ

)
[1]
= −

(
sgn, φ′)

[1]
= −

∫ 0

−∞
dx (−1) · φ′(x)−

∫ +∞

0
dx (+1) · φ′(x)

=
[
+φ(x)

]0
−∞

−
[
φ(x)

]+∞

0

[1]
= 2φ(0)

[1]
=

(
2δ, φ

)
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44. The Sokhotski-Plemelj formula
Consider the following linear maps on S(R):

1

x± i0(φ) := lim
ε↘0

∫
R
dx φ(x)

x± iε(
P 1

x

)
(φ) := lim

ε↘0

∫
|x|≥ε

dx φ(x)

x

Derive the Sokhotski-Plemelj formula
1

x± i0 = P 1
x ∓ iπ δ.

Hint: Decompose the left-hand side into real and imaginary part.

Solution:
We split

1

x± iε =
x

x2 + ε2
∓ i ε

x2 + ε2

into real and imaginary part. First, we discuss the contribution of the real part:

lim
ε↘0

∫
R
dx x

x2 + ε2
φ(x) = lim

ε↘0

(∫ +∞

0
dx x

x2 + ε2
φ(x) +

∫ 0

−∞
dx x

x2 + ε2
φ(x)

)
= lim

ε↘0

(∫ +∞

0
dx x

x2 + ε2
(
φ(x)− φ(−x)

))
In the second step, we have made a change of variables (x 7→ −x). The integrand

fε(x) :=
x

x2 + ε2
(
φ(x)− φ(−x)

)
is continuous and converges pointwise as ε ↘ 0 to the continuous, integrable function

f(x) =
φ(x)− φ(−x)

x
.

Continuity and integrability away from x = 0 are clear. Near the origin x = 0we can use the mean
value theorem to estimate f via φ′, because

f(x) =
φ(x)− φ(−x)

x
=

φ(x)− φ(0)

x
− φ(−x)− φ(0)

−x
ε↘0−−−→ φ′(0)− φ′(0) = 0

reduces to the difference quotient of φ at x = 0.
Hence, |fε(x)| is dominated by the integrable function |f(x)| independently of ε > 0, and thus, we
can use Dominated Convergence to interchange the limit ε ↘ 0 and integration:

lim
ε↘0

∫
R
dx x

x2 + ε2
φ(x) =

∫ ∞

0
dx φ(x)− φ(−x)

x

= lim
ε↘0

∫ ∞

ε
dx φ(x)− φ(−x)

x

= lim
ε↘0

(∫ ∞

ε
dx φ(−x)

−x
+

∫ ∞

ε
dx φ(x)

x

)
= lim

ε↘0

(∫ −ε

−∞
dx φ(x)

x
+

∫ +∞

+ε
dx φ(x)

x

)
=

(
P 1

x

)
(φ)
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Now we discuss the contribution of the imaginary part:

lim
ε↘0

∫
R
dx ε

x2 + ε2
φ(x) = lim

ε↘0

∫
R
dy ε2

ε2 y2 + ε2
φ(εy)

= lim
ε↘0

∫
R
dy 1

y2 + 1
φ(εy)

= φ(0)

∫
R
dy 1

y2 + 1

In the last step, we have once again used Dominated Convergence (φ ∈ S(R)). The last integral can
be computed explicitly (or looked up in a table), and the value is π. Hence, we have shown

1

x± i0 = P 1
x ∓ iπ δ.

6


