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Tempered Distributions

Homework Problems

42. Solving PDEs via the Fourier transform

Assume f € L'(R2) is such that also its Fourier transform f is integrable. Solve the PDE
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on R? using the Fourier transform, and discuss the existence of the solution .

Solution:

If u and all derivatives up to second order are integrable, we can alternatively solve the equation

0%u 9%u ou A

The polynomial P(¢) := —&2 — 2¢2 +i3¢; — 4 has no real zeros, and thus 1/P is bounded. Hence,
we can solve for o and Fourier back-transform,

u(e) = (F7H(I/P) ) (@) = 27 (FA (/) = f(a).

The function u exists, because f € L!(R?) by assumption so that also //P is integrable,
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43. Computations involving distributions (38 points)

Consider the following tempered distributions L € S’(R),

(Lo)i= [ dol(@)ola) vp € S(R),
R
where
()L =6(x) (ii) L = 2° (iii) L = 6! (z) := ¢'(x — a), a €R, (iv) L = |z|.

(a) Show that L is continuous.
(b) Compute the first two distributional derivatives of L.

(c) For (i)-(iii) compute the distributional Fourier transform of L.

Solution:

In what follows, ¢ is always an arbitrary S(R) function. To answer (a), we use the boundedness
criterion from Proposition 7.2.2, a linear function L : S(RY) — C is bounded if and only if

(L) <C 7 Ifllaa

laf,la|<N

holds for some C > 0 and N € Nj. Alternatively, the right-hand side could be bounded by
C maxq| |o|<n || fllaa
(i) (a) ¢ is clearly linear and since [6(¢)| < |||y, the Dirac distribution is also continuous. [1]

(b) Let ¢ € S(R). By definition first and second derivative are given by

(6", 90) = (1) (8,¢) = —¢(0) 1]
(0", ¢) = (=1)% (6,¢") = +¢"(0). 1]

(c) One can compute the Fourier transform explicitly:

1

(.7-_6, <p)

(6.7¢) = (Fo)0) = = [ drot@

U (2m) 72, )

Hence, the Fourier transform of ¢ is the constant function (27)~"/2,

(ii) (a) Since ¢ is a Schwartz function, 22y is integrable, and we have

(20| < [ doa? oo = 12 ol 1 ey i)

and thanks to Lemma 7.1.3 in the lecture notes, we can estimate the L! (R) norm by finitely
many seminorms. This means z? defines a tempered distribution. [1]

(b) Using partial integration, we obtain the first distributional derivative:
(1]
(%f, so) = (2% £o) = —/Rde ¢ (x)

u_ |:$2 (p(x)} J:: + /Rda: (%962) p(x) = /Rdaj 2z p(z) 3 (22, ).



The boundary terms vanish as ¢ decays to 0 faster than any polynomial. Hence, the dis-
tributional derivative coincides with the ordinary derivative.

The second derivative is computed analogously:
(5‘—;#7 gp) = (%QI, go) = —(2z,¢) g / dx 2z ()
R
+oo
= —[295 cp(x)} —i—/daz (%230) o(x) b (2,).
o I

(c) The Fourier transform of z2 in the sense of functions does not exist. Nevertheless, we can
compute its distributional Fourier transform:

(Fz2, ) U (22, Fo) / dz 22 (Fy)(x / dz (F(—i)202¢) ()
~(1. 7o) H (-71 ,agcp) : (—\/%5, aggo) = (—v2r ')
(iii) (a) The tempered distribution ¢/, is defined as
(8os0) = (1) (ur) = = [ dod(e = a) /() = ~¢'(0). 1]

Hence, we can estimate |0/,(¢)| < [¢|lo1 and &, is a tempered distribution. [1]

(b)
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(i(;/ ) = (_1) ( ;)30/) = <_1)2 (5a790”) = "HO//(G’) [1
(&0, 0) = (=12 (0, ¢") = (=1)° (0, "") = =" (a) [
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(c)

(fm <5;,fso>“ (60 £F¢) 2 +(00,iF (@ 0) = i(F(z ) (@)
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(iv) (a) Since the growth of |z| is polynomially bounded, also |z| ¢ is integrable and we obtain
with the help of Lemma 7.1.3:

(i) 2 [ do oot 2o ol e
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Hence, |x| defines a tempered distribution.

(b) The function |z| is differentiable everywhere but at the origin. We conjecture that the
weak derivative is given by

d +1 x>0
— |z| =sgn(z) := <0 x=0
dz

-1 <0



Let ¢ € S(R). We write (- |2|, ) as integral and split it up at = = 0,

(%Ix!w)[: (121, /dxw
/ dz (—2) o (z) — /O de (+2) /().

After partial integration the right-hand side simplifies to

u / du /;OO dz (+1) ¢(z) E/Rdﬂcsgn(fﬂ)w(ﬂf)

] (sgn, o).

Note that the boundary terms at +cc vanish.

We could have defined sgn arbitrarily at z = 0, because the integral does not change if we
modify sgn on a set of measure zero.

The second derivative is computed analogously by splitting up the integral at 0 and using
the Fundamental Theorem of Calculus:

<%Sgl’1, ()0) E _(Sgna 80/)
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a dz (-1) - ¢/ (z) — / dr (+1) - ¢/ ()
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44, The Sokhotski-Plemelj formula

Consider the following linear maps on S(R):

L ()= lim [ do 22

z £ 10 e\O0Jr xxEie
(PL)(g) i=lim [ d?2)
NOJjz)>e T

Derive the Sokhotski-Plemelj formula

_pl :
T =P, Fimd.

Hint: Decompose the left-hand side into real and imaginary part.

Solution:
We split
1 T )
rtie a2+ e2 :':1$U2+62

into real and imaginary part. First, we discuss the contribution of the real part:

lim | dz

. x . oo
O Jr 12+ e2 Plw) = i{% (/0 dx 62 ol / e z2 + 82 el >>

St ([ m (1)~ (-2) )

In the second step, we have made a change of variables (z — —z). The integrand
T
fe(z) = 2212 (90(95) - @(‘@)
is continuous and converges pointwise as ¢ “\, 0 to the continuous, integrable function
p(r) — p(—x)
flar) = DA

Continuity and integrability away from = = 0 are clear. Near the origin x = 0 we can use the mean
value theorem to estimate f via ¢, because

fla) = 2B =eEn) _e(@) —9(0) _ elzz) = #(0)

X X —X
N0
=5 G (0) - ¢'(0) =0

reduces to the difference quotient of ¢ at x = 0.

Hence, | f-(z)| is dominated by the integrable function | f(x)| independently of ¢ > 0, and thus, we
can use Dominated Convergence to interchange the limit £ \ 0 and integration:

lim | do ——— / dx Pl ( 7)
eNO Jr 5132 + 82
* du so(w) - w(—w)
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Now we discuss the contribution of the imaginary part:

2

g 3
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In the last step, we have once again used Dominated Convergence (p € S(R)). The last integral can
be computed explicitly (or looked up in a table), and the value is 7. Hence, we have shown

1 JR—
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