Tempered Distributions

Homework Problems

42. Solving PDEs via the Fourier transform

Assume $f \in L^{1}\left(\mathbb{R}^{2}\right)$ is such that also its Fourier transform \hat{f} is integrable. Solve the PDE

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+2 \frac{\partial^{2} u}{\partial x_{2}^{2}}+3 \frac{\partial u}{\partial x_{1}}-4 u=f
$$

on \mathbb{R}^{2} using the Fourier transform, and discuss the existence of the solution u.
43. Computations involving distributions

Consider the following tempered distributions $L \in \mathcal{S}^{\prime}(\mathbb{R})$,

$$
(L, \varphi):=\int_{\mathbb{R}} \mathrm{d} x L(x) \varphi(x) \quad \forall \varphi \in \mathcal{S}(\mathbb{R})
$$

where
(i) $L=\delta(x)$
(ii) $L=x^{2}$
(iii) $L=\delta_{a}^{\prime}(x):=\delta^{\prime}(x-a), a \in \mathbb{R}$,
(iv) $L=|x|$.
(a) Show that L is continuous.
(b) Compute the first two distributional derivatives of L.
(c) For (i)-(iii) compute the distributional Fourier transform of L.

44. The Sokhotski-Plemelj formula

Consider the following linear maps on $\mathcal{S}(\mathbb{R})$:

$$
\begin{aligned}
\frac{1}{x \pm \mathrm{i} 0}(\varphi) & :=\lim _{\varepsilon \searrow 0} \int_{\mathbb{R}} \mathrm{d} x \frac{\varphi(x)}{x \pm \mathrm{i} \varepsilon} \\
\left(\mathcal{P} \frac{1}{x}\right)(\varphi) & :=\lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \mathrm{d} x \frac{\varphi(x)}{x}
\end{aligned}
$$

Derive the Sokhotski-Plemelj formula

$$
\frac{1}{x \pm \mathrm{i} 0}=\mathcal{P} \frac{1}{x} \mp \mathrm{i} \pi \delta
$$

Hint: Decompose the left-hand side into real and imaginary part.

Hand in home work on: Thursday, 23 January 2014, before class

