## Tempered Distributions \& Green's Functions

## Homework Problems

45. The Sokhotski-Plemelj formula

Consider the linear maps

$$
\begin{aligned}
\frac{1}{x \pm \mathbf{i} 0}(\varphi) & :=\lim _{\varepsilon \searrow 0} \int_{\mathbb{R}} \mathrm{d} x \frac{\varphi(x)}{x \pm \mathbf{i} \varepsilon} \\
\left(\mathcal{P} \frac{1}{x}\right)(\varphi) & :=\lim _{\varepsilon \searrow 0} \int_{|x| \geq \varepsilon} \mathrm{d} x \frac{\varphi(x)}{x}
\end{aligned}
$$

on $\mathcal{S}(\mathbb{R})$ from problem 44 . Show that they define tempered distributions.
Hint: Inspect the solution to problem 44 and work smart, not hard.

## Solution:

It suffices to show that $\mathcal{P} \frac{1}{x}$ defines a tempered distribution, because then, $\frac{1}{x \pm i 0}$ as the sum of two distributions is automatically a distribution.
The linearity of $\mathcal{P} \frac{1}{x}$ is obvious, and we only need to show continuity: Inspecting the solution of exercise 44 , we need to analyze

$$
\left(\mathcal{P} \frac{1}{x}\right)(\varphi)=\int_{0}^{+\infty} \mathrm{d} x \frac{\varphi(x)-\varphi(-x)}{x}
$$

more closely where $\varphi \in \mathcal{S}(\mathbb{R})$. We cut the integral into two pieces,

$$
\int_{0}^{+\infty} \mathrm{d} x \frac{\varphi(x)-\varphi(-x)}{x}=\int_{0}^{1} \mathrm{~d} x \frac{\varphi(x)-\varphi(-x)}{x}+\int_{1}^{+\infty} \mathrm{d} x \frac{\varphi(x)-\varphi(-x)}{x}
$$

and start with the second term. Given that $x \geq 1$, we can estimate

$$
\left|\frac{\varphi(x)-\varphi(-x)}{x}\right| \leq|\varphi(x)|+|\varphi(-x)|
$$

and thus, Lemma 7.1.3 yields a bound of

$$
\begin{aligned}
\left|\int_{1}^{+\infty} \mathrm{d} x \frac{\varphi(x)-\varphi(-x)}{x}\right| & \leq \int_{1}^{+\infty} \mathrm{d} x(|\varphi(x)|+|\varphi(-x)|) \leq \int_{\mathbb{R}} \mathrm{d} x|\varphi(x)| \\
& \leq C_{1}(1)\|\varphi\|_{00}+C_{2}(1) \max _{j=0,1,2}\|f\|_{j 0}
\end{aligned}
$$

The first piece is estimated with the help of mean value theorem,

$$
\begin{aligned}
\left|\frac{\varphi(x)-\varphi(-x)}{0}\right| & \leq\left|\frac{\varphi(x)-\varphi(0)}{x}\right|+\left|\frac{\varphi(-x)-\varphi(0)}{x}\right| \\
& \leq \sup _{x \in[0,1]}\left|\varphi^{\prime}(x)\right|+\sup _{x \in[-1,0]}\left|\varphi^{\prime}(x)\right| \leq 2\|\varphi\|_{01},
\end{aligned}
$$

because the integrand is bounded and the domain of integration compact,

$$
\left|\int_{0}^{1} \mathrm{~d} x \frac{\varphi(x)-\varphi(-x)}{x}\right| \leq 2\|\varphi\|_{01} .
$$

Overall, we have estimated

$$
\left|\left(\mathcal{P} \frac{1}{x}\right)(\varphi)\right| \leq 2\|\varphi\|_{01}+C_{1}(1)\|\varphi\|_{00}+C_{2}(1) \max _{j=0,1,2}\|f\|_{j 0}
$$

by finitely many seminorms, and thus, $\mathcal{P} \frac{1}{x}$ is continuous by Proposition 7.2.2.
46. Green's function for the Poisson equation in $d=2$ (13 points)

Modify the proof of Theorem 8.3.1 to the case $d=2$ in order to prove that the Green's function for $-\Delta_{x}$ in two dimensions is $G(x, y)=-\frac{1}{2 \pi} \ln |x-y|$.

## Solution:

We will reuse the notation from the proof of Theorem 8.3.1. First of all, away from $x=0$, let us compute $\Delta_{x} \ln |x|$. Clearly, $\ln |x|$ is symmetric under exchange of $x_{1}$ and $x_{2}$, and we only need to compute the first two partial derivatives with respect to $x_{j}, j=1,2$ :

$$
\begin{aligned}
& \partial_{x_{j}} \ln |x|=\frac{1}{|x|} \partial_{x_{j}}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) \stackrel{[1]}{=} \frac{x_{j}}{|x|^{2}} \\
& \partial_{x_{j}}^{2} \ln |x|=\frac{1}{|x|^{2}}-2 x_{j}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-2} \stackrel{[1]}{=} \frac{x^{2}-2 x_{j}^{2}}{|x|^{4}}
\end{aligned}
$$

Thus, adding the right-hand sides for $j=1,2$ yields

$$
\Delta_{x} \ln |x|=\frac{x^{2}-2 x_{1}^{2}}{|x|^{4}}+\frac{x^{2}-2 x_{2}^{2}}{|x|^{4}} \stackrel{[1]}{=} 0
$$

Now let $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ be a test function. We apply the weak Laplacian to $\ln |x|$ and insert $0=$ $\Delta_{x} \ln |x| \varphi(x)$,

$$
\begin{aligned}
\left(-\Delta_{x} \ln |x|, \varphi\right) & \stackrel{[1]}{=}-\left(\ln |x|, \Delta_{x} \varphi\right) \stackrel{[1]}{=}-\lim _{\varepsilon \searrow 0} \int_{V_{\varepsilon}} \mathrm{d} x \ln |x| \Delta_{x} \varphi(x) \\
& \stackrel{[1]}{=} \lim _{\varepsilon \searrow 0} \int_{V_{\varepsilon}} \mathrm{d} x\left(\Delta_{x} \ln |x| \varphi(x)-\ln |x| \Delta_{x} \varphi(x)\right) .
\end{aligned}
$$

Again, Green's formula applies,

$$
\begin{gathered}
\ldots \stackrel{[1]}{=} \lim _{\varepsilon \searrow 0} \int_{\partial V_{\varepsilon}} \mathrm{d} S \cdot\left(\partial_{r} \ln |x| \varphi(x)-\ln |x| \partial_{r} \varphi(x)\right) \\
\stackrel{[1]}{=}-\lim _{\varepsilon \searrow 0} \int_{\partial B_{\varepsilon}} \mathrm{d} S \cdot\left(\varepsilon^{-1} \varphi(x)-\ln \varepsilon \partial_{r} \varphi(x)\right)
\end{gathered}
$$

and we obtain an integral with respect to $\mathrm{d} S$, the line measure of the circle of radius $\varepsilon$ [1]. Since the circumference of $B_{\varepsilon}$ scales like $\varepsilon$, the second term vanishes $\left(\lim _{\varepsilon \rightarrow 0}(\varepsilon \ln \varepsilon)=0\right.$ [1]) while the first term converges to

$$
\begin{aligned}
\left(-\Delta_{x} \ln |x|, \varphi\right) & \stackrel{[1]}{=}-\operatorname{Area}\left(\mathbb{S}^{1}\right) \varphi(0) \\
& \stackrel{[1]}{=}-2 \pi(\delta, \varphi) .
\end{aligned}
$$

Hence, the Green's function is given by $G(x, y)=-\frac{1}{2 \pi} \ln |x-y|$ [1] and satisfies $-\Delta G(x, y)=$ $\delta(x-y)$.

