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Tempered Distributions & Green’s Functions

Homework Problems

45. The Sokhotski-Plemelj formula

Consider the linear maps

1 L p(z)

cxp W)= im L de o
PL)(p) = li dz 20

( x)(gp) 6{% |x‘25 xr -

on S(R) from problem 44. Show that they define tempered distributions.

Hint: Inspect the solution to problem 44 and work smart, not hard.

Solution:

It suffices to show that 73% defines a tempered distribution, because then, Flio as the sum of two
distributions is automatically a distribution.

The linearity of P2 is obvious, and we only need to show continuity: Inspecting the solution of
exercise 44, we need to analyze

more closely where ¢ € S(R). We cut the integral into two pieces,

0 P — =) [ e@) —e(=r) [T e(@) = e(-)
/0 dx_/o dx+/1 dp P18 —olmt)

T T T

and start with the second term. Given that > 1, we can estimate
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and thus, Lemma 7.1.3 yields a bound of
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The first piece is estimated with the help of mean value theorem,
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because the integrand is bounded and the domain of integration compact,
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Overall, we have estimated
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by finitely many seminorms, and thus, P2 is continuous by Proposition 7.2.2.



46. Green’s function for the Poisson equation in d = 2 (13 points)

Modify the proof of Theorem 8.3.1 to the case d = 2 in order to prove that the Green’s function for
—A, in two dimensions is G(z,y) = — 5 In|z — y|.

Solution:

We will reuse the notation from the proof of Theorem 8.3.1. First of all, away from = = 0, let us
compute A, In |z|. Clearly, In |z| is symmetric under exchange of z; and z9, and we only need to
compute the first two partial derivatives with respect to z;, j = 1, 2:
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Thus, adding the right-hand sides for j = 1, 2 yields
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Now let ¢ € S(R?) be a test function. We apply the weak Laplacian to In |z| and insert 0 =
Ay In|z| o(x),
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Again, Green’s formula applies,

. 4a gli% - ds - (éh In|z| p(z) — In|z| 8T<P(x)>
Wy A o(a) —
= gl\r% . ds (5 () lne&gp(x)>,

and we obtain an integral with respect to dS, the line measure of the circle of radius  [1]. Since
the circumference of B. scales like ¢, the second term vanishes (lim._ (e Ine) = 0 [1]) while the
first term converges to
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Hence, the Green’s function is given by G(z,y) = —5= In|z — y| [1] and satisfies —AG(z,y) =
S(x —y).



