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Quantum Mechanics

Homework Problems

47. Translations in real and momentum space

Let T, : L?>(R?) — L2(RY), (T,¥)(z) := (z — a), be the translation operator by a € R and
Sy : L2(RY) — L%(R?) the translation operator in momentum space, defined for b € R? through

(FSp) (€) = (F) (€ - b).

(i) Prove that T, and Sj, are unitary and compute their adjoints.
(ii) Prove that S}, is the operator of multiplication by e*i**,
(iii) Is TSy equal to S,T,?

Solution:

(i) Leta € RY, ¢, ¢ € L*(R?). To compute the adjoint operator, we plug everything into the
scalar product:

(o Tb) = | 2@ T)w)de = | G v —a)da
= [T avmdy = [ T v d
Rd R4
:<T—a§071/}>

Hence, we conclude T* = T_,. Obviously, T_, = T, ! is the inverse to T}, because for all
¢ € L?(RY) we have

(T-oTup) (z) = (Tup) (z — (—a)) = p(z + a—a) = ().
Analogously, one can show T, T, = id 2 (gay.

Now to translations Sy, b € R%, in momentum space: by definition,

(FSpp) (k) = (Fo)(k —b) = (T, F¢) (k) (1)
holds for all ¢ € L?(R?). To compute S}, we use Plancherel’s theorem (P) twice: for o, 1) €
L?(R%) we have

(P) o) _

(¢, Sp0) = (Fo, FSpp) = <-7:90,be¢> = (T_yFo, Fy)

D F5_yo, 7o) (50, 0).



(i)

(iii)

In other words, we have shown S; = S_;. That S_; = S 1 js the inverse of S, follows from
the definition, equation (1) as wellas 7, = T}~ L.

FS o P, 780 W1 170 = Fo

Analogously, one shows SpS_ = id 2 (gay.

Let ¢ € S(R?) C L%(R?) be a Schwartz function and b € R?. Then we can write the Fourier
transform as an integral:

(S10) (@) = (F'Fi0) (2) D (F 70 (o)
1

- /R et (T, Fp) (1) db = (2;)”/2

1 iz- (k' ibx 3
= oy /@ﬁ K0 (F) (k) k' = e+ (F~1 F) ()
=€

+ib-x (p(:L')

/ e"=F (Fo)(k —b) dk
Rd

Schwartz functions are dense in L?(R?) (Theorem 7.1.7), and hence this computation extends
by density to all of L?(R?) (cf. Theorem 5.1.6).

Pick arbitrary a € R%, b € R% and o € L%(R?). Then by definition of T}, and (ii), we have
(TaSop) () = (Spp) (@ — a) = e o(z — a)
and
(SpTup) (2) = €™ (Tup) (z) = € p(z — a).
Hence, if a - b # 0, the operators T, S, and ST, differ by a phase. Quite generally, we have
T,S, = e T, Sy

Remark: The reason why translations in space and momentum via a and b, a - b # 0, do not
commute lies with the non-commutativity if position and momentum operator along the same
direction which generate translations in momentum and real space (the order is reversed).



48. The discrete Laplacian

Consider the Hilbert space of square-summable sequences on Z,

22)={v:Z—C| Tzl < oo},
endowed with scalar product

(¥, ) =Y _v(n)p(n).

nel
Fora € Zlet
Ty - 12(Z) — (3(Z), (Taap)(n) == (n — a)
be the translation operator and
A= (Z) — C(Z), (AY)(n) = (n +1) + (n — 1) = 2(n)

the discrete Laplace operator.

(i) Compute T and prove that T}, is unitary.

(ii) Show that T, and A commute, i. e. [T, A] :== T,A — AT, = 0.
(iii) Compute A*,

(iv) Determine E}, so that

Y (n) = etikn, n € Z,k € [, +7],

is an eigenvalue to the discrete Laplacian,

(Ag)(n) = Exy(n).

Is 9y, an element of ¢?(7Z)?

Solution:

(i) The proofthat T, is unitary is completely analogous to problem 47: let ¢, v € ¢%(Z)and a € Z.
The adjoint operator 7, is then T_,,

(0, Tatr) =D o) (Tu)(n) = > _p(n)d(n—a) =Y @k +a) (k)

neZ nez kez
=Y Tad) (k) (k) = (Tap, ¥).
keZ

T_, is also the inverse to T}, since

(T-aTap) (n) = (Tap)(n +a) = p(n+a—a) = p(n)
holds for all ¢ € ¢?(Z) and n € Z. This means T, is unitary.

(ii) It suffices to show that the commutator vanishes pointwise:

(TaA)(n) = (AY)(n —a) =d(n—a+1)+¢(n—a—1) = 2¢(n - a)
(ATu) (n) = (Tu)(n + 1) + (Th) (n — 1) — 2(Tut)) (n)
=yY(n—a+1)+9(n—a—1)—2¢p(n—a) = (T.A¢)(n)

Hence, 15, Al = 0 and T;, commutes with A.



(iii) We will see that the discrete Laplacian A is selfadjoint: for all ¢, 1) € ¢?(Z) we have

(¢, A¢) = Zzso ZZ@ 1) +4(n—1) = 24(n))
=Véso<n—1>w<n>+%m+1>w<n)—2%so<mw<n>
_ni (n—1) +90n7f1)—290( ) 1(n) —ni(AcP)(n)w(n)
:ZEAZso,w)a N
ie. A=A,

(iv) We apply A to the sequence 1/, with entries ¥y (n) = e"*", k € [—n, +n] and obtain

(Ag)(n) = u(n + 1) + Pr(n — 1) — 24y (n) = eTHOHD e FHOL —getitn
= (e e —2) e = (2cosk — 2) e =: E ¢y (n).

Since [¢(n)| = |e*"| = 1 is independent of n € Z, the sequence v, cannot be square
summable, because 1, € (*(Z) necessarily implies lim,,|_,, ¥ (n) = 0.



49. The scaling operator (16 points)

Define position and momentum operator in the adiabatic scaling
q:= ez, p:=—iVg,
as well as position and momentum operator in ordinary scaling
Q:=1z, P:.=—ieV,,
acting on L?(R?). Moreover, for ¢ > 0 and ¢ € L?(R%) we define the scaling operator
(Uep) () := e”* p(ex).
(i) Show that a surjective map U : H; — Ho between two Hilbert spaces which satisfies
(Up, Uy, = (9 9)a,
for all p, ¢ € H; is unitary.
(ii) Show that U. : L?(R?) — L?(R?) is unitary. Compute U?*.
(iii) Show that q and p are unitary equivalent to Q and P, i. e.
U.QU; ! =g, U.PUZ = p.

Solution:

(i) Remark: Initially, the condition that U is surjective was missing in part (i).
Let ¢, € H1. Then we deduce U*U = idy, from

(0. 0), 2 (Up, U, B (U U, ),

Similarly, one obtains UU* = idy, from (U*p, U*1) >H1 = (o, 1/1>H2 for ,1) € Hs and the
fact that U is surjective. [1] Thus, U* = U~! and U is unitary.
(ii) Let o, € L%*(R%). Then a simple substitution of variables yields

(Uep, Uy} & / dz (Uzp)"( )(U DIOE M Caa COLRICY
/ dy ¢*(y = (p,0).

By (i) the operator UL is unitary, so the adjoint is the inverse, U = U-! [1], and the inverse
is given by

(U10) (@) 2 = (k).
(iii) Let ¢ € S(R?) c L%(R?). Then also U.p € S(R?) is a Schwartz functions and we obtain
(U.QU ) (2) 2 o2 (QU ) (ex) 2 2 e (U7 ') (e2)
= eapl@) 2 (ag) (@),

Analogously, we obtain for the momentum operator

(UPUZ ) () B %2 (PU= ) () B e¥2 (i) (Vo (U1 0) ) (e2)
]

o2 (i) 1V, (U79) () = (—=iVa) p() 2 (py) (a).



