Quantum Mechanics

Homework Problems

47. Translations in real and momentum space

Let $T_{a}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right),\left(T_{a} \psi\right)(x):=\psi(x-a)$, be the translation operator by $a \in \mathbb{R}^{d}$ and $S_{b}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ the translation operator in momentum space, defined for $b \in \mathbb{R}^{d}$ through

$$
\left(\mathcal{F} S_{b} \psi\right)(\xi):=(\mathcal{F} \psi)(\xi-b)
$$

(i) Prove that T_{a} and S_{b} are unitary and compute their adjoints.
(ii) Prove that S_{b} is the operator of multiplication by $\mathrm{e}^{+\mathrm{i} b \cdot x}$.
(iii) Is $T_{a} S_{b}$ equal to $S_{b} T_{a}$?

Solution:

(i) Let $a \in \mathbb{R}^{d}, \varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$. To compute the adjoint operator, we plug everything into the scalar product:

$$
\begin{aligned}
\left\langle\varphi, T_{a} \psi\right\rangle & =\int_{\mathbb{R}^{d}} \overline{\varphi(x)}\left(T_{a} \psi\right)(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} \overline{\varphi(x)} \psi(x-a) \mathrm{d} x \\
& =\int_{\mathbb{R}^{d}} \overline{\varphi(y+a)} \psi(y) \mathrm{d} y=\int_{\mathbb{R}^{d}}\left(\overline{T_{-a} \varphi}\right)(y) \psi(y) \mathrm{d} y \\
& =\left\langle T_{-a} \varphi, \psi\right\rangle
\end{aligned}
$$

Hence, we conclude $T_{a}^{*}=T_{-a}$. Obviously, $T_{-a}=T_{a}^{-1}$ is the inverse to T_{a}, because for all $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ we have

$$
\left(T_{-a} T_{a} \varphi\right)(x)=\left(T_{a} \varphi\right)(x-(-a))=\varphi(x+a-a)=\varphi(x)
$$

Analogously, one can show $T_{a} T_{-a}=\mathrm{id}_{L^{2}\left(\mathbb{R}^{d}\right)}$.
Now to translations $S_{b}, b \in \mathbb{R}^{d}$, in momentum space: by definition,

$$
\begin{equation*}
\left(\mathcal{F} S_{b} \varphi\right)(k)=(\mathcal{F} \varphi)(k-b)=\left(T_{b} \mathcal{F} \varphi\right)(k) \tag{1}
\end{equation*}
$$

holds for all $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$. To compute S_{b}^{*}, we use Plancherel's theorem (P) twice: for $\varphi, \psi \in$ $L^{2}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{aligned}
\left\langle\varphi, S_{b} \psi\right\rangle & \stackrel{(\mathrm{P})}{=}\left\langle\mathcal{F} \varphi, \mathcal{F} S_{b} \psi\right\rangle \stackrel{(1)}{=}\left\langle\mathcal{F} \varphi, T_{b} \mathcal{F} \psi\right\rangle=\left\langle T_{-b} \mathcal{F} \varphi, \mathcal{F} \psi\right\rangle \\
& \stackrel{(1)}{=}\left\langle\mathcal{F} S_{-b} \varphi, \mathcal{F} \psi\right\rangle \stackrel{(\mathrm{P})}{=}\left\langle S_{-b} \varphi, \psi\right\rangle
\end{aligned}
$$

In other words, we have shown $S_{b}^{*}=S_{-b}$. That $S_{-b}=S_{b}^{-1}$ is the inverse of S_{b} follows from the definition, equation (1) as well as $T_{-b}=T_{b}^{-1}$:

$$
\mathcal{F} S_{-b} S_{b} \varphi \stackrel{(1)}{=} T_{-b} \mathcal{F} S_{b} \varphi \stackrel{(1)}{=} T_{-b} T_{b} \mathcal{F} \varphi=\mathcal{F} \varphi
$$

Analogously, one shows $S_{b} S_{-b}=\operatorname{id}_{L^{2}\left(\mathbb{R}^{d}\right)}$.
(ii) Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right) \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a Schwartz function and $b \in \mathbb{R}^{d}$. Then we can write the Fourier transform as an integral:

$$
\begin{aligned}
\left(S_{b} \varphi\right)(x) & =\left(\mathcal{F}^{-1} \mathcal{F} S_{b} \varphi\right)(x) \stackrel{(1)}{=}\left(\mathcal{F}^{-1} T_{b} \mathcal{F} \varphi\right)(x) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{+\mathrm{i} x \cdot k}\left(T_{b} \mathcal{F} \varphi\right)(k) \mathrm{d} k=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{+\mathrm{i} x \cdot k}(\mathcal{F} \varphi)(k-b) \mathrm{d} k \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{+i} x \cdot\left(k^{\prime}+b\right)}(\mathcal{F} \varphi)\left(k^{\prime}\right) \mathrm{d} k^{\prime}=\mathrm{e}^{+\mathrm{i} \mathrm{~b} \cdot x}\left(\mathcal{F}^{-1} \mathcal{F} \varphi\right)(x) \\
& =\mathrm{e}^{+\mathrm{i} b \cdot x} \varphi(x)
\end{aligned}
$$

Schwartz functions are dense in $L^{2}\left(\mathbb{R}^{d}\right)$ (Theorem 7.1.7), and hence this computation extends by density to all of $L^{2}\left(\mathbb{R}^{d}\right)$ (cf. Theorem 5.1.6).
(iii) Pick arbitrary $a \in \mathbb{R}^{d}, b \in \mathbb{R}^{d}$ and $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$. Then by definition of T_{a} and (ii), we have

$$
\left(T_{a} S_{b} \varphi\right)(x)=\left(S_{b} \varphi\right)(x-a)=\mathrm{e}^{+\mathrm{i} b \cdot(x-a)} \varphi(x-a)
$$

and

$$
\left(S_{b} T_{a} \varphi\right)(x)=\mathrm{e}^{+\mathrm{i} b \cdot x}\left(T_{a} \varphi\right)(x)=e^{i b \cdot x} \varphi(x-a)
$$

Hence, if $a \cdot b \neq 0$, the operators $T_{a} S_{b}$ and $S_{b} T_{a}$ differ by a phase. Quite generally, we have

$$
T_{a} S_{b}=\mathrm{e}^{-\mathrm{i} a \cdot b} T_{a} S_{b} .
$$

Remark: The reason why translations in space and momentum via a and $b, a \cdot b \neq 0$, do not commute lies with the non-commutativity if position and momentum operator along the same direction which generate translations in momentum and real space (the order is reversed).

48. The discrete Laplacian

Consider the Hilbert space of square-summable sequences on \mathbb{Z},

$$
\ell^{2}(\mathbb{Z}):=\left\{\psi:\left.\mathbb{Z} \longrightarrow \mathbb{C}\left|\sum_{n \in \mathbb{Z}}\right| \psi(n)\right|^{2}<\infty\right\},
$$

endowed with scalar product

$$
\langle\psi, \varphi\rangle:=\sum_{n \in \mathbb{Z}} \overline{\psi(n)} \varphi(n) .
$$

For $a \in \mathbb{Z}$ let

$$
T_{a}: \ell^{2}(\mathbb{Z}) \longrightarrow \ell^{2}(\mathbb{Z}),\left(T_{a} \psi\right)(n):=\psi(n-a)
$$

be the translation operator and

$$
\Delta: \ell^{2}(\mathbb{Z}) \longrightarrow \ell^{2}(\mathbb{Z}),(\Delta \psi)(n):=\psi(n+1)+\psi(n-1)-2 \psi(n)
$$

the discrete Laplace operator.
(i) Compute T_{a}^{*} and prove that T_{a} is unitary.
(ii) Show that T_{a} and Δ commute, i. e. $\left[T_{a}, \Delta\right]:=T_{a} \Delta-\Delta T_{a}=0$.
(iii) Compute Δ^{*}.
(iv) Determine E_{k} so that

$$
\psi_{k}(n):=\mathrm{e}^{+\mathrm{i} k n}, \quad n \in \mathbb{Z}, k \in[-\pi,+\pi],
$$

is an eigenvalue to the discrete Laplacian,

$$
\left(\Delta \psi_{k}\right)(n)=E_{k} \psi_{k}(n) .
$$

Is ψ_{k} an element of $\ell^{2}(\mathbb{Z})$?

Solution:

(i) The proof that T_{a} is unitary is completely analogous to problem 47: let $\varphi, \psi \in \ell^{2}(\mathbb{Z})$ and $a \in \mathbb{Z}$. The adjoint operator T_{a}^{*} is then T_{-a},

$$
\begin{aligned}
\left\langle\varphi, T_{a} \psi\right\rangle & =\sum_{n \in \mathbb{Z}} \overline{\varphi(n)}\left(T_{a} \psi\right)(n)=\sum_{n \in \mathbb{Z}} \overline{\varphi(n)} \psi(n-a)=\sum_{k \in \mathbb{Z}} \overline{\varphi(k+a)} \psi(k) \\
& =\sum_{k \in \mathbb{Z}} \overline{\left(T_{-a} \varphi\right)(k)} \psi(k)=\left\langle T_{-a} \varphi, \psi\right\rangle .
\end{aligned}
$$

T_{-a} is also the inverse to T_{a}, since

$$
\left(T_{-a} T_{a} \varphi\right)(n)=\left(T_{a} \varphi\right)(n+a)=\varphi(n+a-a)=\varphi(n)
$$

holds for all $\varphi \in \ell^{2}(\mathbb{Z})$ and $n \in \mathbb{Z}$. This means T_{a} is unitary.
(ii) It suffices to show that the commutator vanishes pointwise:

$$
\begin{aligned}
\left(T_{a} \Delta \psi\right)(n) & =(\Delta \psi)(n-a)=\psi(n-a+1)+\psi(n-a-1)-2 \psi(n-a) \\
\left(\Delta T_{a} \psi\right)(n) & =\left(T_{a} \psi\right)(n+1)+\left(T_{a} \psi\right)(n-1)-2\left(T_{a} \psi\right)(n) \\
& =\psi(n-a+1)+\psi(n-a-1)-2 \psi(n-a)=\left(T_{a} \Delta \psi\right)(n)
\end{aligned}
$$

Hence, $\left[T_{a}, \Delta\right] \psi=0$ and T_{a} commutes with Δ.
(iii) We will see that the discrete Laplacian Δ is selfadjoint: for all $\varphi, \psi \in \ell^{2}(\mathbb{Z})$ we have

$$
\begin{aligned}
\langle\varphi, \Delta \psi\rangle & =\sum_{n \in \mathbb{Z}} \overline{\varphi(n)}(\Delta \psi)(n)=\sum_{n \in \mathbb{Z}} \overline{\varphi(n)}(\psi(n+1)+\psi(n-1)-2 \psi(n)) \\
& =\sum_{n \in \mathbb{Z}} \overline{\varphi(n-1)} \psi(n)+\sum_{n \in \mathbb{Z}} \overline{\varphi(n+1)} \psi(n)-2 \sum_{n \in \mathbb{Z}} \overline{\varphi(n)} \psi(n) \\
& =\sum_{n \in \mathbb{Z}} \overline{(\varphi(n-1)+\varphi(n+1)-2 \varphi(n))} \psi(n)=\sum_{n \in \mathbb{Z}} \overline{(\Delta \varphi)(n)} \psi(n) \\
& =\langle\Delta \varphi, \psi\rangle,
\end{aligned}
$$

i. e. $\Delta^{*}=\Delta$.
(iv) We apply Δ to the sequence ψ_{k} with entries $\psi_{k}(n)=\mathrm{e}^{+\mathrm{i} k n}, k \in[-\pi,+\pi]$ and obtain

$$
\begin{aligned}
\left(\Delta \psi_{k}\right)(n) & =\psi_{k}(n+1)+\psi_{k}(n-1)-2 \psi_{k}(n)=\mathrm{e}^{+\mathrm{i} k(n+1)}+\mathrm{e}^{+\mathrm{i} k(n-1)}-2 \mathrm{e}^{+\mathrm{i} k n} \\
& =\left(\mathrm{e}^{+\mathrm{i} k}+\mathrm{e}^{-\mathrm{i} k}-2\right) \mathrm{e}^{\mathrm{+} \mathrm{i} k n}=(2 \cos k-2) \mathrm{e}^{\mathrm{i} k n}=: E_{k} \psi_{k}(n) .
\end{aligned}
$$

Since $\left|\psi_{k}(n)\right|=\left|\mathrm{e}^{\mathrm{i} k n}\right|=1$ is independent of $n \in \mathbb{Z}$, the sequence ψ_{k} cannot be square summable, because $\psi_{k} \in \ell^{2}(\mathbb{Z})$ necessarily implies $\lim _{|n| \rightarrow \infty} \psi_{k}(n)=0$.

49. The scaling operator (16 points)

Define position and momentum operator in the adiabatic scaling

$$
\mathrm{q}:=\varepsilon \hat{x}, \quad \mathrm{p}:=-\mathrm{i} \nabla_{x}
$$

as well as position and momentum operator in ordinary scaling

$$
\mathrm{Q}:=\hat{x}, \quad \mathrm{P}:=-\mathrm{i} \varepsilon \nabla_{x}
$$

acting on $L^{2}\left(\mathbb{R}^{d}\right)$. Moreover, for $\varepsilon>0$ and $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ we define the scaling operator

$$
\left(U_{\varepsilon} \varphi\right)(x):=\varepsilon^{d / 2} \varphi(\varepsilon x)
$$

(i) Show that a surjective map $U: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ between two Hilbert spaces which satisfies

$$
\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}}=\langle\varphi, \psi\rangle_{\mathcal{H}_{1}}
$$

for all $\varphi, \psi \in \mathcal{H}_{1}$ is unitary.
(ii) Show that $U_{\varepsilon}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is unitary. Compute U_{ε}^{*}.
(iii) Show that q and p are unitary equivalent to Q and P, i. e.

$$
U_{\varepsilon} \mathrm{Q} U_{\varepsilon}^{-1}=\mathrm{q}, \quad U_{\varepsilon} \mathrm{P} U_{\varepsilon}^{-1}=\mathrm{p}
$$

Solution:

(i) Remark: Initially, the condition that U is surjective was missing in part (i).

Let $\varphi, \psi \in \mathcal{H}_{1}$. Then we deduce $U^{*} U=\mathrm{id}_{\mathcal{H}_{1}}$ from

$$
\langle\varphi, \psi\rangle_{\mathcal{H}_{1}} \stackrel{[1]}{=}\langle U \varphi, U \psi\rangle_{\mathcal{H}_{2}} \stackrel{[1]}{=}\left\langle U^{*} U \varphi, \psi\right\rangle_{\mathcal{H}_{1}} .
$$

Similarly, one obtains $U U^{*}=\operatorname{id}_{\mathcal{H}_{2}}$ from $\left\langle U^{*} \varphi, U^{*} \psi\right\rangle_{\mathcal{H}_{1}}=\langle\varphi, \psi\rangle_{\mathcal{H}_{2}}$ for $\varphi, \psi \in \mathcal{H}_{2}$ and the fact that U is surjective. [1] Thus, $U^{*}=U^{-1}$ and U is unitary.
(ii) Let $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$. Then a simple substitution of variables yields

$$
\begin{aligned}
\left\langle U_{\varepsilon} \varphi, U_{\varepsilon} \psi\right\rangle & \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} x\left(U_{\varepsilon} \varphi\right)^{*}(x)\left(U_{\varepsilon} \psi\right)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} x \varepsilon^{d / 2} \varphi^{*}(\varepsilon x) \varepsilon^{d / 2} \psi(\varepsilon x) \\
& =\int_{\mathbb{R}^{d}} \mathrm{~d} y \varphi^{*}(y) \psi(y) \stackrel{[1]}{=}\langle\varphi, \psi\rangle .
\end{aligned}
$$

By (i) the operator U_{ε} is unitary, so the adjoint is the inverse, $U_{\varepsilon}^{*}=U_{\varepsilon}^{-1}$ [1], and the inverse is given by

$$
\left(U_{\varepsilon}^{-1} \varphi\right)(x) \stackrel{[1]}{=} \varepsilon^{-d / 2} \varphi(x / \varepsilon)
$$

(iii) Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right) \subset L^{2}\left(\mathbb{R}^{d}\right)$. Then also $U_{\varepsilon} \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ is a Schwartz functions and we obtain

$$
\begin{aligned}
&\left(U_{\varepsilon} \mathbf{Q} U_{\varepsilon}^{-1} \varphi\right)(x) \stackrel{[1]}{=} \varepsilon^{d / 2}\left(\mathbf{Q} U_{\varepsilon}^{-1} \varphi\right)(\varepsilon x) \stackrel{[1]}{=} \varepsilon^{d / 2} \varepsilon x\left(U_{\varepsilon}^{-1} \varphi\right)(\varepsilon x) \\
& \stackrel{[1]}{=} \varepsilon x \varphi(x) \stackrel{[1]}{=}(\mathbf{q} \varphi)(x) .
\end{aligned}
$$

Analogously, we obtain for the momentum operator

$$
\begin{aligned}
\left(U_{\varepsilon} \mathrm{P} U_{\varepsilon}^{-1} \varphi\right)(x) & \stackrel{[1]}{=} \varepsilon^{d / 2}\left(\mathrm{P} U_{\varepsilon}^{-1} \varphi\right)(\varepsilon x) \stackrel{[1]}{=} \varepsilon^{d / 2}(-i \varepsilon)\left(\nabla_{x}\left(U_{\varepsilon}^{-1} \varphi\right)\right)(\varepsilon x) \\
& \stackrel{[1]}{=} \varepsilon^{d / 2}(-i \varepsilon) \frac{1}{\varepsilon} \nabla_{x}\left(\left(U_{\varepsilon}^{-1} \varphi\right)(\varepsilon x)\right)=\left(-i \nabla_{x}\right) \varphi(x) \stackrel{[1]}{=}(\mathbf{p} \varphi)(x) .
\end{aligned}
$$

