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47. Translations in real and momentum space
Let Ta : L2(Rd) −→ L2(Rd), (Taψ)(x) := ψ(x − a), be the translation operator by a ∈ Rd and
Sb : L

2(Rd) −→ L2(Rd) the translation operator in momentum space, defined for b ∈ Rd through(
FSbψ

)
(ξ) :=

(
Fψ

)
(ξ − b).

(i) Prove that Ta and Sb are unitary and compute their adjoints.
(ii) Prove that Sb is the operator of multiplication by e+ib·x.
(iii) Is TaSb equal to SbTa?

Solution:

(i) Let a ∈ Rd, φ,ψ ∈ L2(Rd). To compute the adjoint operator, we plug everything into the
scalar product: ⟨

φ, Taψ
⟩
=

∫
Rd

φ(x) (Taψ)(x) dx =

∫
Rd

φ(x)ψ(x− a) dx

=

∫
Rd

φ(y + a)ψ(y) dy =

∫
Rd

(T−aφ)(y)ψ(y) dy

=
⟨
T−aφ,ψ

⟩
Hence, we conclude T ∗

a = T−a. Obviously, T−a = T−1
a is the inverse to Ta, because for all

φ ∈ L2(Rd) we have(
T−aTaφ

)
(x) =

(
Taφ

)(
x− (−a)

)
= φ(x+ a− a) = φ(x).

Analogously, one can show TaT−a = idL2(Rd).

Now to translations Sb, b ∈ Rd, in momentum space: by definition,(
FSbφ

)
(k) =

(
Fφ

)
(k − b) =

(
TbFφ

)
(k) (1)

holds for all φ ∈ L2(Rd). To compute S∗
b , we use Plancherel’s theorem (P) twice: for φ,ψ ∈

L2(Rd) we have

⟨
φ, Sbψ

⟩ (P)
=

⟨
Fφ,FSbψ

⟩ (1)
=

⟨
Fφ, TbFψ

⟩
=

⟨
T−bFφ,Fψ

⟩
(1)
=

⟨
FS−bφ,Fψ

⟩ (P)
=

⟨
S−bφ,ψ

⟩
.
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In other words, we have shown S∗
b = S−b. That S−b = S−1

b is the inverse of Sb follows from
the definition, equation (1) as well as T−b = T−1

b :

FS−bSbφ
(1)
= T−bFSbφ

(1)
= T−bTbFφ = Fφ

Analogously, one shows SbS−b = idL2(Rd).

(ii) Let φ ∈ S(Rd) ⊂ L2(Rd) be a Schwartz function and b ∈ Rd. Then we can write the Fourier
transform as an integral:

(
Sbφ

)
(x) =

(
F−1FSbφ

)
(x)

(1)
=

(
F−1TbFφ

)
(x)

=
1

(2π)n/2

∫
Rd

e+ix·k (TbFφ)(k) dk =
1

(2π)n/2

∫
Rd

e+ix·k (Fφ)(k − b) dk

=
1

(2π)n/2

∫
Rd

e+ix·(k′+b) (Fφ)(k′) dk′ = e+ib·x (F−1Fφ
)
(x)

= e+ib·x φ(x)

Schwartz functions are dense inL2(Rd) (Theorem 7.1.7), and hence this computation extends
by density to all of L2(Rd) (cf. Theorem 5.1.6).

(iii) Pick arbitrary a ∈ Rd, b ∈ Rd and φ ∈ L2(Rd). Then by definition of Ta and (ii), we have(
TaSbφ

)
(x) = (Sbφ)(x− a) = e+ib·(x−a) φ(x− a)

and (
SbTaφ

)
(x) = e+ib·x (Taφ)(x) = eib·x φ(x− a).

Hence, if a · b ̸= 0, the operators TaSb and SbTa differ by a phase. Quite generally, we have

TaSb = e−ia·bTaSb.

Remark: The reason why translations in space and momentum via a and b, a · b ̸= 0, do not
commute lies with the non-commutativity if position andmomentumoperator along the same
direction which generate translations in momentum and real space (the order is reversed).
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48. The discrete Laplacian
Consider the Hilbert space of square-summable sequences on Z,

ℓ2(Z) :=
{
ψ : Z −→ C

∣∣ ∑
n∈Z |ψ(n)|

2 <∞
}
,

endowed with scalar product

⟨ψ,φ⟩ :=
∑
n∈Z

ψ(n)φ(n).

For a ∈ Z let

Ta : ℓ2(Z) −→ ℓ2(Z), (Taψ)(n) := ψ(n− a)

be the translation operator and

∆ : ℓ2(Z) −→ ℓ2(Z), (∆ψ)(n) := ψ(n+ 1) + ψ(n− 1)− 2ψ(n)

the discrete Laplace operator.
(i) Compute T ∗

a and prove that Ta is unitary.
(ii) Show that Ta and∆ commute, i. e. [Ta,∆] := Ta∆−∆Ta = 0.
(iii) Compute∆∗.
(iv) Determine Ek so that

ψk(n) := e+ikn, n ∈ Z, k ∈ [−π,+π],

is an eigenvalue to the discrete Laplacian,

(∆ψk)(n) = Ekψk(n).

Is ψk an element of ℓ2(Z)?

Solution:

(i) The proof thatTa is unitary is completely analogous to problem 47: letφ,ψ ∈ ℓ2(Z) and a ∈ Z.
The adjoint operator T ∗

a is then T−a,⟨
φ, Taψ

⟩
=

∑
n∈Z

φ(n) (Taψ)(n) =
∑
n∈Z

φ(n)ψ(n− a) =
∑
k∈Z

φ(k + a)ψ(k)

=
∑
k∈Z

(T−aφ)(k)ψ(k) =
⟨
T−aφ,ψ

⟩
.

T−a is also the inverse to Ta, since(
T−aTaφ

)
(n) = (Taφ)(n+ a) = φ(n+ a− a) = φ(n)

holds for all φ ∈ ℓ2(Z) and n ∈ Z. This means Ta is unitary.
(ii) It suffices to show that the commutator vanishes pointwise:(

Ta∆ψ
)
(n) = (∆ψ)(n− a) = ψ(n− a+ 1) + ψ(n− a− 1)− 2ψ(n− a)(

∆Taψ
)
(n) = (Taψ)(n+ 1) + (Taψ)(n− 1)− 2(Taψ)(n)

= ψ(n− a+ 1) + ψ(n− a− 1)− 2ψ(n− a) =
(
Ta∆ψ

)
(n)

Hence, [Ta,∆]ψ = 0 and Ta commutes with∆.
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(iii) We will see that the discrete Laplacian∆ is selfadjoint: for all φ,ψ ∈ ℓ2(Z) we have⟨
φ,∆ψ

⟩
=

∑
n∈Z

φ(n) (∆ψ)(n) =
∑
n∈Z

φ(n)
(
ψ(n+ 1) + ψ(n− 1)− 2ψ(n)

)
=

∑
n∈Z

φ(n− 1)ψ(n) +
∑
n∈Z

φ(n+ 1)ψ(n)− 2
∑
n∈Z

φ(n)ψ(n)

=
∑
n∈Z

(
φ(n− 1) + φ(n+ 1)− 2φ(n)

)
ψ(n) =

∑
n∈Z

(∆φ)(n)ψ(n)

=
⟨
∆φ,ψ

⟩
,

i. e.∆∗ = ∆.
(iv) We apply∆ to the sequence ψk with entries ψk(n) = e+ikn, k ∈ [−π,+π] and obtain

(∆ψk)(n) = ψk(n+ 1) + ψk(n− 1)− 2ψk(n) = e+ik(n+1) + e+ik(n−1) − 2e+ikn

=
(
e+ik + e−ik − 2

)
e+ikn =

(
2 cos k − 2

)
e+ikn =: Ek ψk(n).

Since |ψk(n)| =
∣∣eikn∣∣ = 1 is independent of n ∈ Z, the sequence ψk cannot be square

summable, because ψk ∈ ℓ2(Z) necessarily implies lim|n|→∞ ψk(n) = 0.
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49. The scaling operator (16 points)
Define position and momentum operator in the adiabatic scaling

q := εx̂, p := −i∇x,

as well as position and momentum operator in ordinary scaling

Q := x̂, P := −iε∇x,

acting on L2(Rd). Moreover, for ε > 0 and φ ∈ L2(Rd) we define the scaling operator(
Uεφ

)
(x) := ε

d/2 φ(εx).

(i) Show that a surjective map U : H1 −→ H2 between two Hilbert spaces which satisfies⟨
Uφ,Uψ

⟩
H2

=
⟨
φ,ψ

⟩
H1

for all φ,ψ ∈ H1 is unitary.
(ii) Show that Uε : L

2(Rd) −→ L2(Rd) is unitary. Compute U∗
ε .

(iii) Show that q and p are unitary equivalent to Q and P, i. e.

UεQU−1
ε = q, UεPU−1

ε = p.

Solution:
(i) Remark: Initially, the condition that U is surjective was missing in part (i).

Let φ,ψ ∈ H1. Then we deduce U∗U = idH1 from⟨
φ,ψ

⟩
H1

[1]
=

⟨
Uφ,Uψ

⟩
H2

[1]
=

⟨
U∗Uφ,ψ

⟩
H1
.

Similarly, one obtains UU∗ = idH2 from
⟨
U∗φ,U∗ψ

⟩
H1

=
⟨
φ,ψ

⟩
H2

for φ,ψ ∈ H2 and the
fact that U is surjective. [1] Thus, U∗ = U−1 and U is unitary.

(ii) Let φ,ψ ∈ L2(Rd). Then a simple substitution of variables yields⟨
Uεφ,Uεψ

⟩ [1]
=

∫
Rd

dx
(
Uεφ

)∗
(x)

(
Uεψ

)
(x)

[1]
=

∫
Rd

dx εd/2φ∗(εx) ε
d/2ψ(εx)

=

∫
Rd

dy φ∗(y)ψ(y)
[1]
=

⟨
φ,ψ

⟩
.

By (i) the operator Uε is unitary, so the adjoint is the inverse, U∗
ε = U−1

ε [1], and the inverse
is given by (

U−1
ε φ

)
(x)

[1]
= ε−

d/2 φ
(
x/ε

)
.

(iii) Let φ ∈ S(Rd) ⊂ L2(Rd). Then also Uεφ ∈ S(Rd) is a Schwartz functions and we obtain(
UεQU−1

ε φ
)
(x)

[1]
= ε

d/2
(
QU−1

ε φ
)
(εx)

[1]
= ε

d/2 εx
(
U−1
ε φ

)
(εx)

[1]
= εxφ(x)

[1]
=

(
qφ

)
(x).

Analogously, we obtain for the momentum operator(
UεPU−1

ε φ
)
(x)

[1]
= ε

d/2
(
PU−1

ε φ
)
(εx)

[1]
= ε

d/2 (−iε)
(
∇x

(
U−1
ε φ

))
(εx)

[1]
= ε

d/2 (−iε)1ε∇x

((
U−1
ε φ

)
(εx)

)
= (−i∇x)φ(x)

[1]
=

(
pφ

)
(x).
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