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50. The discrete Laplacian
Let∆ be the discrete Laplacian from problem 48.
(i) Show that∆ is a bounded operator on ℓ2(Z).
(ii) Compute the spectrum of∆.
Hint: Revisit Chapter 6.1.6.

Solution:

(i) We recognize∆ as the one-dimensional version of the nearest-neighbor hopping hamiltonian
given in equation (6.1.15), and thus

∆ = s+ s∗ − 2.

After (discrete) Fourier transform,∆ becomes the operator ofmultiplicationwith the function

E(k) = 2 cos k − 2.

Since E is bounded, E(k̂) and thus also∆ is bounded by problem 24.
(ii) The spectrumofmultiplication operators, in turn, is given by the range of the function, i. e.σ(∆) =

[−4, 0].
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51. Rank-1 operators
Suppose φ,ψ ̸= 0 are elements of a Hilbert spaceH, and define the rank-1 operator P = |φ⟩⟨ψ| via

Pϕ = ⟨ψ, ϕ⟩ φ.

(i) Find all eigenvectors and eigenvalues of P .
(ii) Compute σ(P ).
(iii) Determine the nature of the spectrum, i. e. determine σess(P ), σdisc(P ), σcont(P ) and σp(P ).

Solution:

(i) We can read off the eigenvalues from the form of the operator: the first eigenvector is φ with
eigenvalue λ := ⟨ψ,φ⟩.
The other eigenvalue is 0, because for any vector ϕ perpendicular to ψ, we have Pϕ = 0, and
thus the eigenspace is

kerP = {ψ}⊥.

Now there are two cases: ψ ⊥ φ, and then also λ = 0 and the only eigenvalue is 0. Or ⟨ψ,φ⟩ ̸=
0 and P has two different eigenvalues.

(ii) Clearly, {0, λ} ⊆ σ(P ) where λ = ⟨ψ,φ⟩.
Since ranP = span{φ} is a one-dimensional subspace, the operatorP −z is always invertible
on

(
ranP

)⊥. On the one-dimensional subspace ranP , the operator is invertible if and only if
z ̸= λ. Hence, we have shown σ(P ) = {0, λ}.

(iii) By the classification introduced in Chapter 9.3, we know that

σcont(P ) = ∅
σp(P ) = σ(P )

σess(P ) = {0}

σdisc(P ) =

{
{λ} λ ̸= 0

∅ λ = 0

because the eigenspace associated toλ ̸= 0 is one-dimensional andkerP is infinite-dimensional.
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52. Operator kernels (13 points)
LetT ∈ B

(
L2(Rd)

)
be a bounded operator onL2(Rd). Then the operator kernelKT is the tempered

distribution which satisfies

(Tφ)(x) =

∫
Rd

dy KT (x, y)φ(y)

for all φ ∈ S(Rd).
(i) Find the operator kernels for the following operators:

(a) idL2(Rd)

(b) P = |φ⟩⟨ψ| defined as problem 51 where φ,ψ ∈ L2(Rd)

(c)
(
−∂2x + E

)−1 where E > 0 and d = 1

(ii) Let T, S ∈ B
(
L2(Rd)

)
. Show that the operator kernel of TS satisfies

KTS(x, z) =

∫
Rd

dy KT (x, y)KS(y, z).

(iii) Let T ∈ B
(
L2(Rd)

)
be an operator with operator kernelKT . Find the operator kernel of T ∗.

Solution:

(i) (a) Kid
L2(Rd)

(x, y) = δ(x− y) [1]

(b) KP (x, y) = φ(x)ψ(y) [1]
(c) Here, we actually need to do a little work: the operator kernel −∂2x + E is actually its

Green’s function, and thus the operator kernel is

G(x, y)
[1]
=

√
2π

(
F−1(ξ2 + E)−1

)
(x− y)

[2]
= e−

√
E|x−y|

2
√
E

.

(ii) (
TSφ

)
(x)

[1]
=

∫
Rd

dy KT (x, y) (Sφ)(y)

[1]
=

∫
Rd

dy
∫
Rd

dz KT (x, y)KS(y, z)φ(z)

[1]
=

∫
Rd

dy
(∫

Rd

dz KT (x, y)KS(y, z)

)
φ(z)

[1]
=

∫
Rd

dy KTS(x, z)φ(z)

(iii) From the definition of the adjoint, we get⟨
T ∗φ,ψ

⟩
=

⟨
φ, Tψ

⟩ [1]
=

∫
Rd

dxφ(x) (Tψ)(x)

[1]
=

∫
Rd

dxφ(x)
∫
Rd

dy KT (x, y)ψ(y)

[1]
=

∫
Rd

dy
(∫

Rd

dxKT (x, y)φ(x)

)
ψ(y).

Hence, we deduceKT ∗(x, y) = KT (y, x) [1].
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53. Projections
Consider the multiplication operator P = p(x̂) on L2(Rd) associated to the function

p(x) =

{
1 x ≥ 0

0 x < 0
.

(i) Compute σ(P ).
(ii) Determine the nature of the spectrum, i. e. determine σess(P ), σdisc(P ), σcont(P ) and σp(P ).
(iii) Prove that P is an orthogonal projection.

Solution:

(i) First of all, P has two eigenvalues, namely 0 and 1: the eigenvectors to the eigenvalue 1 are
functions which vanish almost everywhere on (−∞, 0). Similarly, eigenvectors to the eigen-
value 0 are functions which vanish almost everywhere on [0,+∞).
Since (P − z)φ = 0means that

(
(P − z)φ

)
(x) = 0 for almost all x ∈ R. Thus, for all z ̸= 0, 1

we have (P − z)φ ̸= 0 for all φ ̸= 0, i. e. P − z is invertible as long as z ̸= 0, 1, and we have
shown σ(P ) = {0, 1}.

(ii) The eigenspaces to both eigenvalues are infinite-dimensional, and thus

σp(P ) = σ(P )

σcont(P ) = ∅
σess(P ) = {0, 1}
σdisc(P ) = ∅

(iii) p is a real-valued, bounded function, and hence, by problem 24P ∗ = P . (Otherwise, one needs
to show this by hand for this special case.)
To see P 2 = P , we note p2 = p in the sense of functions and conclude

(P 2φ)(x) = p(x)2 φ(x) = p(x)φ(x) = (Pφ)(x).

Thus, P = P ∗ = P 2 is an orthogonal projection.
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