

Differential Equations of Mathematical Physics (APM 351 Y)

2013-2014 Solutions 16 (2014.02.13)

Quantum Mechanics

Homework Problems

50. The discrete Laplacian

Let Δ be the discrete Laplacian from problem 48.

- (i) Show that Δ is a bounded operator on $\ell^2(\mathbb{Z})$.
- (ii) Compute the spectrum of Δ .

Hint: Revisit Chapter 6.1.6.

Solution:

(i) We recognize Δ as the one-dimensional version of the nearest-neighbor hopping hamiltonian given in equation (6.1.15), and thus

$$\Delta = \mathfrak{s} + \mathfrak{s}^* - 2.$$

After (discrete) Fourier transform, Δ becomes the operator of multiplication with the function

$$E(k) = 2\,\cos k - 2.$$

Since E is bounded, $E(\hat{k})$ and thus also Δ is bounded by problem 24.

(ii) The spectrum of multiplication operators, in turn, is given by the range of the function, i. e. $\sigma(\Delta) = [-4, 0]$.

51. Rank-1 operators

Suppose $\varphi, \psi \neq 0$ are elements of a Hilbert space \mathcal{H} , and define the rank-1 operator $P = |\varphi\rangle\langle\psi|$ via

$$P\phi = \langle \psi, \phi \rangle \varphi.$$

- (i) Find all eigenvectors and eigenvalues of *P*.
- (ii) Compute $\sigma(P)$.
- (iii) Determine the nature of the spectrum, i. e. determine $\sigma_{ess}(P)$, $\sigma_{disc}(P)$, $\sigma_{cont}(P)$ and $\sigma_{p}(P)$.

Solution:

(i) We can read off the eigenvalues from the form of the operator: the first eigenvector is φ with eigenvalue $\lambda := \langle \psi, \varphi \rangle$.

The other eigenvalue is 0, because for any vector ϕ perpendicular to ψ , we have $P\phi=0,$ and thus the eigenspace is

$$\ker P = \{\psi\}^{\perp}.$$

Now there are two cases: $\psi \perp \varphi$, and then also $\lambda = 0$ and the only eigenvalue is 0. Or $\langle \psi, \varphi \rangle \neq 0$ and P has two different eigenvalues.

(ii) Clearly, $\{0, \lambda\} \subseteq \sigma(P)$ where $\lambda = \langle \psi, \varphi \rangle$.

Since ran $P = \text{span}\{\varphi\}$ is a one-dimensional subspace, the operator P - z is always invertible on $(\operatorname{ran} P)^{\perp}$. On the one-dimensional subspace ran P, the operator is invertible if and only if $z \neq \lambda$. Hence, we have shown $\sigma(P) = \{0, \lambda\}$.

(iii) By the classification introduced in Chapter 9.3, we know that

$$\begin{split} \sigma_{\rm cont}(P) &= \emptyset \\ \sigma_{\rm p}(P) &= \sigma(P) \\ \sigma_{\rm ess}(P) &= \{0\} \\ \sigma_{\rm disc}(P) &= \begin{cases} \{\lambda\} & \lambda \neq 0 \\ \emptyset & \lambda = 0 \end{cases} \end{split}$$

because the eigenspace associated to $\lambda \neq 0$ is one-dimensional and ker *P* is infinite-dimensional.

52. Operator kernels (13 points)

Let $T \in \mathcal{B}(L^2(\mathbb{R}^d))$ be a bounded operator on $L^2(\mathbb{R}^d)$. Then the operator kernel K_T is the tempered distribution which satisfies

$$(T\varphi)(x) = \int_{\mathbb{R}^d} \mathrm{d}y \, K_T(x,y) \, \varphi(y)$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

- (i) Find the operator kernels for the following operators:
 - (a) $\operatorname{id}_{L^2(\mathbb{R}^d)}$
 - (b) $P = |\varphi\rangle\langle\psi|$ defined as problem 51 where $\varphi, \psi \in L^2(\mathbb{R}^d)$
 - (c) $\left(-\partial_x^2+E\right)^{-1}$ where E>0 and d=1
- (ii) Let $T, S \in \mathcal{B}(L^2(\mathbb{R}^d))$. Show that the operator kernel of TS satisfies

$$K_{TS}(x,z) = \int_{\mathbb{R}^d} \mathrm{d}y \, K_T(x,y) \, K_S(y,z).$$

(iii) Let $T \in \mathcal{B}(L^2(\mathbb{R}^d))$ be an operator with operator kernel K_T . Find the operator kernel of T^* .

Solution:

- (i) (a) $K_{\mathrm{id}_{L^2(\mathbb{R}^d)}}(x,y) = \delta(x-y)$ [1]
 - (b) $K_P(x,y) = \varphi(x) \overline{\psi(y)}$ [1]
 - (c) Here, we actually need to do a little work: the operator kernel $-\partial_x^2 + E$ is actually its *Green's function*, and thus the operator kernel is

$$G(x,y) \stackrel{[1]}{=} \sqrt{2\pi} \left(\mathcal{F}^{-1} (\xi^2 + E)^{-1} \right) (x-y) \stackrel{[2]}{=} \frac{e^{-\sqrt{E}|x-y|}}{2\sqrt{E}}$$

(ii)

$$(TS\varphi)(x) \stackrel{[1]}{=} \int_{\mathbb{R}^d} dy \, K_T(x,y) \, (S\varphi)(y)$$

$$\stackrel{[1]}{=} \int_{\mathbb{R}^d} dy \, \int_{\mathbb{R}^d} dz \, K_T(x,y) \, K_S(y,z) \, \varphi(z)$$

$$\stackrel{[1]}{=} \int_{\mathbb{R}^d} dy \, \left(\int_{\mathbb{R}^d} dz \, K_T(x,y) \, K_S(y,z) \right) \varphi(z)$$

$$\stackrel{[1]}{=} \int_{\mathbb{R}^d} dy \, K_{TS}(x,z) \, \varphi(z)$$

(iii) From the definition of the adjoint, we get

$$\langle T^* \varphi, \psi \rangle = \langle \varphi, T\psi \rangle \stackrel{[1]}{=} \int_{\mathbb{R}^d} dx \,\overline{\varphi(x)} \, (T\psi)(x)$$

$$\stackrel{[1]}{=} \int_{\mathbb{R}^d} dx \,\overline{\varphi(x)} \, \int_{\mathbb{R}^d} dy \, K_T(x, y) \, \psi(y)$$

$$\stackrel{[1]}{=} \int_{\mathbb{R}^d} dy \, \left(\overline{\int_{\mathbb{R}^d} dx \, \overline{K_T(x, y)} \, \varphi(x)} \right) \, \psi(y).$$

Hence, we deduce $K_{T^*}(x,y) = \overline{K_T(y,x)}$ [1].

53. Projections

Consider the multiplication operator $P = p(\hat{x})$ on $L^2(\mathbb{R}^d)$ associated to the function

$$p(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

- (i) Compute $\sigma(P)$.
- (ii) Determine the nature of the spectrum, i. e. determine $\sigma_{ess}(P)$, $\sigma_{disc}(P)$, $\sigma_{cont}(P)$ and $\sigma_{p}(P)$.
- (iii) Prove that P is an orthogonal projection.

Solution:

(i) First of all, P has two eigenvalues, namely 0 and 1: the eigenvectors to the eigenvalue 1 are functions which vanish almost everywhere on $(-\infty, 0)$. Similarly, eigenvectors to the eigenvalue 0 are functions which vanish almost everywhere on $[0, +\infty)$.

Since $(P-z)\varphi = 0$ means that $((P-z)\varphi)(x) = 0$ for almost all $x \in \mathbb{R}$. Thus, for all $z \neq 0, 1$ we have $(P-z)\varphi \neq 0$ for all $\varphi \neq 0$, i. e. P-z is invertible as long as $z \neq 0, 1$, and we have shown $\sigma(P) = \{0, 1\}$.

(ii) The eigenspaces to both eigenvalues are infinite-dimensional, and thus

$$\sigma_{p}(P) = \sigma(P)$$

$$\sigma_{cont}(P) = \emptyset$$

$$\sigma_{ess}(P) = \{0, 1\}$$

$$\sigma_{disc}(P) = \emptyset$$

(iii) p is a real-valued, bounded function, and hence, by problem 24 $P^* = P$. (Otherwise, one needs to show this by hand for this special case.)

To see $P^2 = P$, we note $p^2 = p$ in the sense of functions and conclude

$$(P^2\varphi)(x) = p(x)^2 \varphi(x) = p(x) \varphi(x) = (P\varphi)(x).$$

Thus, $P = P^* = P^2$ is an orthogonal projection.