

Differential Equations of Mathematical Physics (APM 351 Y)

2013–2014 Problem Sheet 16 (2014.02.13)

Quantum Mechanics

Homework Problems

50. The discrete Laplacian

Let Δ be the discrete Laplacian from problem 48.

- (i) Show that Δ is a bounded operator on $\ell^2(\mathbb{Z})$.
- (ii) Compute the spectrum of Δ .

Hint: Revisit Chapter 6.1.6.

51. Rank-1 operators

Suppose $\varphi, \psi \neq 0$ are elements of a Hilbert space \mathcal{H} , and define the rank-1 operator $P = |\varphi\rangle\langle\psi|$ via

$$P\phi = \langle \psi, \phi \rangle \varphi.$$

- (i) Find all eigenvectors and eigenvalues of *P*.
- (ii) Compute $\sigma(P)$.
- (iii) Determine the nature of the spectrum, i. e. determine $\sigma_{\text{ess}}(P)$, $\sigma_{\text{disc}}(P)$, $\sigma_{\text{cont}}(P)$ and $\sigma_{p}(P)$.

52. Operator kernels

Let $T \in \mathcal{B}(L^2(\mathbb{R}^d))$ be a bounded operator on $L^2(\mathbb{R}^d)$. Then the operator kernel K_T is the tempered distribution which satisfies

$$(T\varphi)(x) = \int_{\mathbb{R}^d} \mathrm{d}y \, K_T(x,y) \, \varphi(y)$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

- (i) Find the operator kernels for the following operators:
 - (a) $\operatorname{id}_{L^2(\mathbb{R}^d)}$
 - (b) $P = |\varphi\rangle\langle\psi|$ defined as problem 51 where $\varphi, \psi \in L^2(\mathbb{R}^d)$

(c) $(-\partial_x^2 + E)^{-1}$ where E > 0 and d = 1

(ii) Let $T, S \in \mathcal{B}(L^2(\mathbb{R}^d))$. Show that the operator kernel of TS satisfies

$$K_{TS}(x,z) = \int_{\mathbb{R}^d} \mathrm{d}y \, K_T(x,y) \, K_S(y,z).$$

(iii) Let $T \in \mathcal{B}(L^2(\mathbb{R}^d))$ be an operator with operator kernel K_T . Find the operator kernel of T^* .

53. Projections

Consider the multiplication operator $P=p(\hat{x})$ on $L^2(\mathbb{R}^d)$ associated to the function

$$p(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}.$$

- (i) Compute $\sigma(P)$.
- (ii) Determine the nature of the spectrum, i. e. determine $\sigma_{\text{ess}}(P)$, $\sigma_{\text{disc}}(P)$, $\sigma_{\text{cont}}(P)$ and $\sigma_{p}(P)$.
- (iii) Prove that P is an orthogonal projection.

Hand in home work on: Thursday, 27 February 2014, before class