Quantum Mechanics

Homework Problems

50. The discrete Laplacian

Let Δ be the discrete Laplacian from problem 48.
(i) Show that Δ is a bounded operator on $\ell^{2}(\mathbb{Z})$.
(ii) Compute the spectrum of Δ.

Hint: Revisit Chapter 6.1.6.

51. Rank-1 operators

Suppose $\varphi, \psi \neq 0$ are elements of a Hilbert space \mathcal{H}, and define the rank- 1 operator $P=|\varphi\rangle\langle\psi|$ via

$$
P \phi=\langle\psi, \phi\rangle \varphi
$$

(i) Find all eigenvectors and eigenvalues of P.
(ii) Compute $\sigma(P)$.
(iii) Determine the nature of the spectrum, i. e. determine $\sigma_{\text {ess }}(P), \sigma_{\text {disc }}(P), \sigma_{\text {cont }}(P)$ and $\sigma_{\mathrm{p}}(P)$.

52. Operator kernels

Let $T \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ be a bounded operator on $L^{2}\left(\mathbb{R}^{d}\right)$. Then the operator kernel K_{T} is the tempered distribution which satisfies

$$
(T \varphi)(x)=\int_{\mathbb{R}^{d}} \mathrm{~d} y K_{T}(x, y) \varphi(y)
$$

for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(i) Find the operator kernels for the following operators:
(a) $\operatorname{id}_{L^{2}\left(\mathbb{R}^{d}\right)}$
(b) $P=|\varphi\rangle\langle\psi|$ defined as problem 51 where $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$
(c) $\left(-\partial_{x}^{2}+E\right)^{-1}$ where $E>0$ and $d=1$
(ii) Let $T, S \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$. Show that the operator kernel of $T S$ satisfies

$$
K_{T S}(x, z)=\int_{\mathbb{R}^{d}} \mathrm{~d} y K_{T}(x, y) K_{S}(y, z)
$$

(iii) Let $T \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ be an operator with operator kernel K_{T}. Find the operator kernel of T^{*}.
53. Projections

Consider the multiplication operator $P=p(\hat{x})$ on $L^{2}\left(\mathbb{R}^{d}\right)$ associated to the function

$$
p(x)=\left\{\begin{array}{ll}
1 & x \geq 0 \\
0 & x<0
\end{array} .\right.
$$

(i) Compute $\sigma(P)$.
(ii) Determine the nature of the spectrum, i. e. determine $\sigma_{\text {ess }}(P), \sigma_{\text {disc }}(P), \sigma_{\text {cont }}(P)$ and $\sigma_{\mathrm{p}}(P)$.
(iii) Prove that P is an orthogonal projection.

