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54. The energy functional for the quantum harmonic oscillator (24 points)
Define the average energy

Eφ(H) :=

∫
R
dx
(

1

2m

∣∣φ′(x)
∣∣2 + V (x)

∣∣φ(x)∣∣2) =: Eφ

(
− 1

2m∂
2
x

)
+ Eφ(V )

associated to the hamiltonian H = − 1
2m∂

2
x + V and ψ ∈ S(R), seen as the sum of kinetic energy

Eφ

(
− 1

2m∂
2
x

)
and potential energy Eφ(V ).

Consider the case of the harmonic oscillator where V (x) = m
2 ω

2x2 is the potential energy and
ω > 0 the characteristic frequency of the oscillator. Moreover, define the family of scaled Gaußians
φλ(x) := π−1/4

√
λ e−λ2

2
x2 , λ > 0.

(i) Determine the expected value of the energy E(λ) := Eφλ
(H) as a function of λ.

(ii) Find the λmin which minimizes E(λ). Give the minimizing wavefunction φ0 := φλmin .
(iii) For which λ is the expected value of the kinetic energy small? What about the potential en-

ergy? Interpret your results.
(iv) Determine E0 ∈ R so that φ0 from (ii) satisfies the eigenvalue equation

Hφ0 = E0 φ0.

Solution:

(i) To compute E(φλ) we need the derivative of φλ:

d
dxφλ(x) = π−

1/4
√
λ (−λ2x)e−

λ2

2
x2

= (−λ2x)φλ(x) [1]

Plugged into E(φλ) we obtain

E(λ) : = Eφλ
(H)

[1]
=

∫
R
dx
(

1

2m

∣∣φ′
λ(x)

∣∣2 + m

2
ω2x2

∣∣φλ(x)
∣∣2)

=

∫
R
dx
(

1

2m

∣∣∣∣(−λ2x)π−1/4
√
λ e−

λ2

2
x2

∣∣∣∣2 + m

2
ω2x2

∣∣∣∣π−1/4
√
λ e−

λ2

2
x2

∣∣∣∣2
)

[1]
=

1√
π

∫
R
dxλ 1

2m

(
λ4 +m2ω2

)
x2 e−λ2x2

.
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We make a change of variables and obtain the Gauß integral after partial integration:

E(λ)
[1]
=

1√
π

∫
R
dy 1

λ
· λ 1

2m

(
λ4 +m2ω2

)
λ−2y2 e−y2

[1]
=

1√
π

1

2m

(
λ2 +m2ω2λ−2

)
︸ ︷︷ ︸

=:C(λ)

·2
∫ ∞

0
dy y · y e−y2

[1]
=

2√
π
C(λ)

[
y ·
(
−1

2e
−y2
)]∞

0
− 2√

π
C(λ)

∫ ∞

0
dy 1 ·

(
−1

2e
−y2
)

= 0 +
1√
π
C(λ)

∫ ∞

0
dy e−y2 [1]

=
1√
π
C(λ)

∫ ∞

0
dξ 1

2
ξ−

1/2 e−ξ

[1]
=

1

2
√
π
C(λ) Γ

(
1
2

) [1]
=

1

4m

(
λ2 +m2ω2λ−2

)
(ii) We compute the first two derivatives of the function E(λ):

E′(λ) =
1

4m

(
2λ− 2m2ω2λ−3

)
=

1

2m

(
λ−m2ω2λ−3

)
E′′(λ) =

1

2m

(
1 + 3m2ω2λ−4

)
> 0 [1]

Hence, the expected value of the energy is a convex function of λ. We determine the local
extrema by setting the derivative 0:

E′(λ) =
1

2m

(
λ−m2ω2λ−3

) !
= 0 [1]

Consequently, λ4 = m2ω2, so that λc =
√
mω [1]. At this point,

E(λc) =
1

4m

(
mω +m2ω2 · 1

mω

)
= 1

4

(
ω + ω

)
= ω

2 . [1]

Since E(λ) tends to ∞ for large and small λ, limλ↘0E(λ) = ∞ = limλ→∞E(λ), the point(
λmin, E(λmin)

)
=
(√
mω, ω2

)
is necessarily a global minimum [1] and

φ0(x) = φ√
mω(x) =

4

√
mω

π
e−

mωx2

2 [1]

the state of minimal energy.
(iii) Looking at the computation in (i), we immediately see

Eφλ

(
− 1

2m∂
2
x

)
=

1

4m
λ2

Eφλ
(V ) =

m

4
ω2λ−2. [1]

The average kinetic energy is small if λ≪ 1 is small [1]; λ≪ 1means that the wave function
is flat and spread out, the particle is delocalized [1].
Conversely, the average potential energy is small if λ ≫ 1 [1]; then φλ is sharply peaked
around x = 0 and the particle is well-localized [1].
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(iv) We plug the second derivative of φ0,

φ′
0(x) =

d
dx

4

√
mω

π
e−

mωx2

2 = − 4

√
mω

π
mω x e−

mωx2

2 = −mω xφ0(x)

φ′′
0(x) = − 4

√
mω

π
mω e−

mωx2

2 + 4

√
mω

π
(−mω x)2 e−

mωx2

2

= 4

√
mω

π
mω

(
mω x2 − 1

)
e−

mωx2

2 = mω
(
mω x2 − 1

)
φ0(x), [1]

into the left-hand side ofHφ0 and obtain

− 1

2m
φ′′
0(x) +

m

2
ω2x2 φ0(x)

[1]
=

(
− 1

2m
mω

(
mω x2 − 1

)
+
m

2
ω2x2

)
φ0(x)

[1]
= ω

2 φ0(x) +
1
2

(
−mω2 +mω2

)
x2 φ0(x)

[1]
= ω

2 φ0(x).

That means E0 =
ω
2 = E

(√
mω
)
[1].
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55. The free relativistic Schrödinger operator
Consider the free relativistic Schrödinger operatorH :=

√
m2 −∆x on L2(Rd) defined as in prob-

lem 4 of Test 2.
(i) Compute σ(H).
(ii) Determine the nature of the spectrum, i. e. determine σess(P ), σdisc(P ), σcont(P ) and σp(P ).
(iii) Are the eigenfunctions elements of the Hilbert space?

Solution:

(i) By definition, the operator is unitarily equivalent to the operator of multiplication by T (ξ) =√
m2 + ξ2, and hence, σ(H) = ranT = [0,+∞).

(ii) The function T is nowhere locally constant, and thus, the spectrum is purely essential and
purely continuous,

σ(H) = σess(H) = σcont(H),

σp(H) = σdisc(H) = ∅.

(iii) The eigenfunctions ofH are plane waves e+iξ·x which are not square integrable.
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56. The Wigner transform: fundamental properties
The Wigner transform of a Schwartz function ψ ∈ S(R) is defined as(

W(ψ)
)
(x, ξ) :=

1

2π

∫
R
dy e−iy ξ ψ

(
x− ε

2y
)
ψ
(
x+ ε

2y
)

where x is position and ξ is momentum.
(i) Show thatW(ψ) is a real-valued function on phase space R2.
(ii) Compute the marginals of the Wigner transform,∫

R
dx
(
W(ψ)

)
(x, ξ),

∫
R
dξ
(
W(ψ)

)
(x, ξ),

∫
R2

dx dξ
(
W(ψ)

)
(x, ξ).

(iii) Show
(
W(Tx′ψ)

)
(x, ξ) =

(
W(ψ)

)
(x− x′, ξ) where (Tx′ψ)(x) := ψ(x− x′).

Solution:

(i) We have to showW(ψ) = W(ψ):(
W(ψ)

)
(x, ξ) =

1

2π

∫
R
dy e−iy ξ ψ

(
x− ε

2y
)
ψ
(
x+ ε

2y
)

=
1

2π

∫
R
dy e+iy·ξ ψ

(
x− ε

2y
)
ψ
(
x+ ε

2y
)

=
1

2π

∫
R
dy e−iy·ξ ψ

(
x+ ε

2y
)
ψ
(
x− ε

2y
)
=
(
W(ψ)

)
(x, ξ).

(ii) If we take the marginals with respect to x, we get∫
R
dx
(
W(ψ)

)
(x, ξ) =

1

2π

∫
R
dx
∫
R
dy e−iy ξ ψ

(
x− ε

2y
)
ψ
(
x+ ε

2y
)

=
1

2π

∫
R
dx′
∫
R
dy e−iy ξ ψ(x′)ψ(x′ + εy)

=
ε−d

2π

∫
R
dx′
∫
R
dy′ e−

i
ε
(y′−x′) ξ ψ(x′)ψ(y′)

= ε−d
∣∣(Fψ)(ξ/ε)∣∣2.

The other marginal can be obtained analogously,∫
R
dξ
(
W(ψ)

)
(x, ξ) = |ψ(x)|2.

The above calculations show ∫
R2

dx dξ
(
W(ψ)

)
(x, ξ) = ∥ψ∥2 .

(iii) (
W(Tyψ)

)
(x, ξ) =

1

2π

∫
R
dy e−iy ξ (Tx′ψ)

(
x− ε

2y
)
(Tx′ψ)

(
x+ ε

2y
)

=
1

2π

∫
R
dy e−iy ξ ψ

(
x− x′ − ε

2y
)
ψ
(
x− x′ + ε

2y
)

=
(
W(ψ)

)
(x− x′, ξ)
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57. The Wigner transform: computations of Wigner transforms
Define the Wigner transform as in problem 56 but set ε = 1.

(i) Compute theWigner transformofψ(x) = e+iξc x e−
x2

2b2 . Explain atwhat point inR2 theWigner
transformed function takes its maximum.

(ii) Which roles do the parameters b and ξc from part (i) play? What does the Wigner transform
of ψ(x− xc) look like?

(iii) Compute the Wigner transform of φ(x) = x e−x2

4 .
(iv) Can the Wigner transform be interpreted as a classical state?

Solution:

(i) We plug ψ into the definition of the Wigner transform and obtain:

(
W(ψ)

)
(x, ξ) =

1

2π

∫
R
dy e−iξ y ψ

(
x− y

2

)
ψ
(
x+ y

2

)
=

1

2π

∫
Rd

dy e−iξ y e−iξc (x− y
2
) e−

(x− y
2 )2

2b2 e+iξc (x+ y
2
) e−

(x+
y
2 )2

2b2

=
1

2π

∫
Rd

dy e−i(ξc−ξ) y e−
x2

b2 e−
y2

4b2

= e−
x2

b2
(
2π (2b2)−1

)−1/2 e−
x2

2 e−
(ξ−ξc)

2 2b2

2

=
b√
π
e−

x2

2 e−b2(ξ−ξc)2

The wave packet is centered around the point (0, ξc) in phase space.
(ii) The parameter b quantifies the width of the wave packet in real space. Since the widths in real

and momentum space are inverses of one another, the state looks as follows:

ξc gives the position of the maximum in momentum space. The prefactor e−iξc·x shifts the
wave packet in momentum space by ξc. Replacing x by x − xc translates the wave packet in
real space:
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(iii) (
W(φ)

)
(x, ξ) =

1

2π

∫
R
dy e−iy·ξ φ

(
x− y

2

)
φ
(
x+ y

2

)
=

1

2π

∫
R
dy e−iy·ξ (x− y

2

) (
x+ y

2

)
e−

1
4
[(x− y

2
)2+(x+ y

2
)2]

= 2e−
x2

2
1

2π

∫
R
dy e−iy·2ξ (x2 − y2) e−

y2

2

= π−1 e−
x2

2

(
x2e−2ξ2 + 1

4∂
2
ξ

(
e−2ξ2

))
= π−1

(
x2 + (2ξ)2 − 1

)
e−2x2e−2ξ2 ̸≥ 0.
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58. Ground state of the cut off Lenard-Jones potential
Consider the hamiltonianHλ = −∂2x + λV , λ > 0, for the cut off Lenard-Jones potential

V (x) =

{
1

|x|12 − 1
|x|6 |x| ≥ 1

0 |x| < 1

in one dimension.
(i) Show that there exists a λ0 > 0 such that for all 0 < λ < λ0 the hamiltonianHλ has a unique

bound state of energy Eλ < 0.
(ii) Compute Eλ to leading order in λ.

Solution:

(i) The function V is non-positive, has no singularity and decays as |x|−6 for large |x|. Conse-
quently, V, x2V ∈ L1(R) and Theorem 9.3.7 applies, i. e. there exists λ0 > 0 so thatHλ has a
unique bound state of energy Eλ < 0.

(ii) Equation (9.3.3) gives an explicit estimate on the value of Eλ = −λ2

4 ∥V ∥2L1(R) + O(λ4) to
leading order, and hence, we need to compute∫

R
dx |V (x)| = −2

∫ ∞

1
dx
(

1

|x|12
− 1

|x|6

)
= −2

[
x−11

−11
− x−5

−5

]∞
1

=
2

5
− 2

11
=

12

55
≈ 0.218.

Plugged into equation (9.3.3) then yields

Eλ = −λ2 62

552
+O(λ4) ≈ 0.0119 · λ2 +O(λ4).
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