Quantum Mechanics

Homework Problems

54. The energy functional for the quantum harmonic oscillator (24 points)

Define the average energy

$$
\mathbb{E}_{\varphi}(H):=\int_{\mathbb{R}} \mathrm{d} x\left(\frac{1}{2 m}\left|\varphi^{\prime}(x)\right|^{2}+V(x)|\varphi(x)|^{2}\right)=: \mathbb{E}_{\varphi}\left(-\frac{1}{2 m} \partial_{x}^{2}\right)+\mathbb{E}_{\varphi}(V)
$$

associated to the hamiltonian $H=-\frac{1}{2 m} \partial_{x}^{2}+V$ and $\psi \in \mathcal{S}(\mathbb{R})$, seen as the sum of kinetic energy $\mathbb{E}_{\varphi}\left(-\frac{1}{2 m} \partial_{x}^{2}\right)$ and potential energy $\mathbb{E}_{\varphi}(V)$.
Consider the case of the harmonic oscillator where $V(x)=\frac{m}{2} \omega^{2} x^{2}$ is the potential energy and $\omega>0$ the characteristic frequency of the oscillator. Moreover, define the family of scaled Gaußians $\varphi_{\lambda}(x):=\pi^{-1 / 4} \sqrt{\lambda} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}, \lambda>0$.
(i) Determine the expected value of the energy $E(\lambda):=\mathbb{E}_{\varphi_{\lambda}}(H)$ as a function of λ.
(ii) Find the $\lambda_{\text {min }}$ which minimizes $E(\lambda)$. Give the minimizing wavefunction $\varphi_{0}:=\varphi_{\lambda_{\text {min }}}$.
(iii) For which λ is the expected value of the kinetic energy small? What about the potential energy? Interpret your results.
(iv) Determine $E_{0} \in \mathbb{R}$ so that φ_{0} from (ii) satisfies the eigenvalue equation

$$
H \varphi_{0}=E_{0} \varphi_{0} .
$$

Solution:

(i) To compute $\mathcal{E}\left(\varphi_{\lambda}\right)$ we need the derivative of φ_{λ} :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{\lambda}(x)=\pi^{-1 / 4} \sqrt{\lambda}\left(-\lambda^{2} x\right) \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}=\left(-\lambda^{2} x\right) \varphi_{\lambda}(x) \tag{1}
\end{equation*}
$$

Plugged into $\mathcal{E}\left(\varphi_{\lambda}\right)$ we obtain

$$
\begin{aligned}
E(\lambda): & =\mathbb{E}_{\varphi_{\lambda}}(H) \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} x\left(\frac{1}{2 m}\left|\varphi_{\lambda}^{\prime}(x)\right|^{2}+\frac{m}{2} \omega^{2} x^{2}\left|\varphi_{\lambda}(x)\right|^{2}\right) \\
& =\int_{\mathbb{R}} \mathrm{d} x\left(\frac{1}{2 m}\left|\left(-\lambda^{2} x\right) \pi^{-1 / 4} \sqrt{\lambda} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}\right|^{2}+\frac{m}{2} \omega^{2} x^{2}\left|\pi^{-1 / 4} \sqrt{\lambda} \mathrm{e}^{-\frac{\lambda^{2} x^{2}}{2}}\right|^{2}\right) \\
& \stackrel{[1]}{=} \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} x \lambda \frac{1}{2 m}\left(\lambda^{4}+m^{2} \omega^{2}\right) x^{2} \mathrm{e}^{-\lambda^{2} x^{2}} .
\end{aligned}
$$

We make a change of variables and obtain the Gauß integral after partial integration:

$$
\begin{aligned}
& E(\lambda) \stackrel{[1]}{=} \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} y \frac{1}{\lambda} \cdot \lambda \frac{1}{2 m}\left(\lambda^{4}+m^{2} \omega^{2}\right) \lambda^{-2} y^{2} \mathrm{e}^{-y^{2}} \\
& \stackrel{[1]}{=} \frac{1}{\sqrt{\pi}} \frac{1}{2 m}\left(\lambda^{2}+m^{2} \omega^{2} \lambda^{-2}\right) \\
&=: C(\lambda) \\
& \stackrel{[1]}{=} \frac{2}{\sqrt{\pi}} C(\lambda)\left[y \cdot\left(-\frac{1}{2} \mathrm{e}^{-y^{2}}\right)\right]_{0}^{\infty}-\frac{2}{\sqrt{\pi}} C\left(\lambda y \cdot y \mathrm{e}^{-y^{2}}\right. \\
&=0+\frac{1}{\sqrt{\pi}} C(\lambda) \int_{0}^{\infty} \mathrm{d} y 1 \cdot\left(-\frac{1}{2} \mathrm{e}^{-y^{2}}\right) \\
& \mathrm{d} y \mathrm{e}^{-y^{2}} \stackrel{[1]}{=} \frac{1}{\sqrt{\pi}} C(\lambda) \int_{0}^{\infty \sqrt{\pi}} \mathrm{d} \xi \frac{1}{2} \xi^{-1 / 2} \mathrm{e}^{-\xi} \\
&(\lambda) \Gamma\left(\frac{1}{2}\right) \stackrel{[1]}{=} \frac{1}{4 m}\left(\lambda^{2}+m^{2} \omega^{2} \lambda^{-2}\right)
\end{aligned}
$$

(ii) We compute the first two derivatives of the function $E(\lambda)$:

$$
\begin{align*}
E^{\prime}(\lambda) & =\frac{1}{4 m}\left(2 \lambda-2 m^{2} \omega^{2} \lambda^{-3}\right)=\frac{1}{2 m}\left(\lambda-m^{2} \omega^{2} \lambda^{-3}\right) \\
E^{\prime \prime}(\lambda) & =\frac{1}{2 m}\left(1+3 m^{2} \omega^{2} \lambda^{-4}\right)>0 \tag{1}
\end{align*}
$$

Hence, the expected value of the energy is a convex function of λ. We determine the local extrema by setting the derivative 0 :

$$
\begin{equation*}
E^{\prime}(\lambda)=\frac{1}{2 m}\left(\lambda-m^{2} \omega^{2} \lambda^{-3}\right) \stackrel{!}{=} 0 \tag{1}
\end{equation*}
$$

Consequently, $\lambda^{4}=m^{2} \omega^{2}$, so that $\lambda_{c}=\sqrt{m \omega}[1]$. At this point,

$$
\begin{equation*}
E\left(\lambda_{c}\right)=\frac{1}{4 m}\left(m \omega+m^{2} \omega^{2} \cdot \frac{1}{m \omega}\right)=\frac{1}{4}(\omega+\omega)=\frac{\omega}{2} . \tag{1}
\end{equation*}
$$

Since $E(\lambda)$ tends to ∞ for large and small $\lambda, \lim _{\lambda \backslash 0} E(\lambda)=\infty=\lim _{\lambda \rightarrow \infty} E(\lambda)$, the point $\left(\lambda_{\text {min }}, E\left(\lambda_{\text {min }}\right)\right)=\left(\sqrt{m \omega}, \frac{\omega}{2}\right)$ is necessarily a global minimum [1] and

$$
\begin{equation*}
\varphi_{0}(x)=\varphi_{\sqrt{m \omega}}(x)=\sqrt[4]{\frac{m \omega}{\pi}} \mathrm{e}^{-\frac{m \omega x^{2}}{2}} \tag{1}
\end{equation*}
$$

the state of minimal energy.
(iii) Looking at the computation in (i), we immediately see

$$
\begin{align*}
\mathbb{E}_{\varphi_{\lambda}}\left(-\frac{1}{2 m} \partial_{x}^{2}\right) & =\frac{1}{4 m} \lambda^{2} \\
\mathbb{E}_{\varphi_{\lambda}}(V) & =\frac{m}{4} \omega^{2} \lambda^{-2} . \tag{1}
\end{align*}
$$

The average kinetic energy is small if $\lambda \ll 1$ is small [1]; $\lambda \ll 1$ means that the wave function is flat and spread out, the particle is delocalized [1].
Conversely, the average potential energy is small if $\lambda \gg 1$ [1]; then φ_{λ} is sharply peaked around $x=0$ and the particle is well-localized [1].
(iv) We plug the second derivative of φ_{0},

$$
\begin{align*}
\varphi_{0}^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt[4]{\frac{m \omega}{\pi}} \mathrm{e}^{-\frac{m \omega x^{2}}{2}}=-\sqrt[4]{\frac{m \omega}{\pi}} m \omega x \mathrm{e}^{-\frac{m \omega x^{2}}{2}}=-m \omega x \varphi_{0}(x) \\
\varphi_{0}^{\prime \prime}(x) & =-\sqrt[4]{\frac{m \omega}{\pi}} m \omega \mathrm{e}^{-\frac{m \omega x^{2}}{2}}+\sqrt[4]{\frac{m \omega}{\pi}}(-m \omega x)^{2} \mathrm{e}^{-\frac{m \omega x^{2}}{2}} \\
& =\sqrt[4]{\frac{m \omega}{\pi}} m \omega\left(m \omega x^{2}-1\right) \mathrm{e}^{-\frac{m \omega x^{2}}{2}}=m \omega\left(m \omega x^{2}-1\right) \varphi_{0}(x), \tag{1}
\end{align*}
$$

into the left-hand side of $H \varphi_{0}$ and obtain

$$
\begin{aligned}
-\frac{1}{2 m} \varphi_{0}^{\prime \prime}(x)+\frac{m}{2} \omega^{2} x^{2} \varphi_{0}(x) & \stackrel{[1]}{=}\left(-\frac{1}{2 m} m \omega\left(m \omega x^{2}-1\right)+\frac{m}{2} \omega^{2} x^{2}\right) \varphi_{0}(x) \\
& \stackrel{[1]}{=} \frac{\omega}{2} \varphi_{0}(x)+\frac{1}{2}\left(-m \omega^{2}+m \omega^{2}\right) x^{2} \varphi_{0}(x) \stackrel{[1]}{=} \frac{\omega}{2} \varphi_{0}(x) .
\end{aligned}
$$

That means $E_{0}=\frac{\omega}{2}=E(\sqrt{m \omega})[1]$.

55. The free relativistic Schrödinger operator

Consider the free relativistic Schrödinger operator $H:=\sqrt{m^{2}-\Delta_{x}}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ defined as in problem 4 of Test 2.
(i) Compute $\sigma(H)$.
(ii) Determine the nature of the spectrum, i. e. determine $\sigma_{\text {ess }}(P), \sigma_{\text {disc }}(P), \sigma_{\text {cont }}(P)$ and $\sigma_{\mathrm{p}}(P)$.
(iii) Are the eigenfunctions elements of the Hilbert space?

Solution:

(i) By definition, the operator is unitarily equivalent to the operator of multiplication by $T(\xi)=$ $\sqrt{m^{2}+\xi^{2}}$, and hence, $\sigma(H)=\operatorname{ran} T=[0,+\infty)$.
(ii) The function T is nowhere locally constant, and thus, the spectrum is purely essential and purely continuous,

$$
\begin{aligned}
\sigma(H) & =\sigma_{\mathrm{ess}}(H)=\sigma_{\mathrm{cont}}(H) \\
\sigma_{\mathrm{p}}(H) & =\sigma_{\mathrm{disc}}(H)=\emptyset
\end{aligned}
$$

(iii) The eigenfunctions of H are plane waves $\mathrm{e}^{+\mathrm{i} \xi \cdot x}$ which are not square integrable.

56. The Wigner transform: fundamental properties

The Wigner transform of a Schwartz function $\psi \in \mathcal{S}(\mathbb{R})$ is defined as

$$
(\mathcal{W}(\psi))(x, \xi):=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\psi\left(x-\frac{\varepsilon}{2} y\right)} \psi\left(x+\frac{\varepsilon}{2} y\right)
$$

where x is position and ξ is momentum.
(i) Show that $\mathcal{W}(\psi)$ is a real-valued function on phase space \mathbb{R}^{2}.
(ii) Compute the marginals of the Wigner transform,

$$
\int_{\mathbb{R}} \mathrm{d} x(\mathcal{W}(\psi))(x, \xi), \quad \int_{\mathbb{R}} \mathrm{d} \xi(\mathcal{W}(\psi))(x, \xi), \quad \int_{\mathbb{R}^{2}} \mathrm{~d} x \mathrm{~d} \xi(\mathcal{W}(\psi))(x, \xi) .
$$

(iii) Show $\left(\mathcal{W}\left(T_{x^{\prime}} \psi\right)\right)(x, \xi)=(\mathcal{W}(\psi))\left(x-x^{\prime}, \xi\right)$ where $\left(T_{x^{\prime}} \psi\right)(x):=\psi\left(x-x^{\prime}\right)$.

Solution:

(i) We have to show $\overline{\mathcal{W}(\psi)}=\mathcal{W}(\psi)$:

$$
\begin{aligned}
\overline{(\mathcal{W}(\psi))(x, \xi)} & =\overline{\frac{1}{2 \pi}} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\psi\left(x-\frac{\varepsilon}{2} y\right)} \psi\left(x+\frac{\varepsilon}{2} y\right) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{+\mathrm{i} y \cdot \xi} \psi\left(x-\frac{\varepsilon}{2} y\right) \overline{\psi\left(x+\frac{\varepsilon}{2} y\right)} \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \cdot \xi} \psi\left(x+\frac{\varepsilon}{2} y\right) \overline{\psi\left(x-\frac{\varepsilon}{2} y\right)}=(\mathcal{W}(\psi))(x, \xi) .
\end{aligned}
$$

(ii) If we take the marginals with respect to x, we get

$$
\begin{aligned}
\int_{\mathbb{R}} \mathrm{d} x(\mathcal{W}(\psi))(x, \xi) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} x \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\psi\left(x-\frac{\varepsilon}{2} y\right)} \psi\left(x+\frac{\varepsilon}{2} y\right) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\psi\left(x^{\prime}\right)} \psi\left(x^{\prime}+\varepsilon y\right) \\
& =\frac{\varepsilon^{-d}}{2 \pi} \int_{\mathbb{R}} \mathrm{d} x^{\prime} \int_{\mathbb{R}} \mathrm{d} y^{\prime} \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon}\left(y^{\prime}-x^{\prime}\right) \xi} \overline{\psi\left(x^{\prime}\right)} \psi\left(y^{\prime}\right) \\
& =\varepsilon^{-d}|(\mathcal{F} \psi)(\xi / \varepsilon)|^{2} .
\end{aligned}
$$

The other marginal can be obtained analogously,

$$
\int_{\mathbb{R}} \mathrm{d} \xi(\mathcal{W}(\psi))(x, \xi)=|\psi(x)|^{2} .
$$

The above calculations show

$$
\int_{\mathbb{R}^{2}} \mathrm{~d} x \mathrm{~d} \xi(\mathcal{W}(\psi))(x, \xi)=\|\psi\|^{2}
$$

(iii)

$$
\begin{aligned}
\left(\mathcal{W}\left(T_{y} \psi\right)\right)(x, \xi) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\left(T_{x^{\prime}} \psi\right)\left(x-\frac{\varepsilon}{2} y\right)}\left(T_{x^{\prime}} \psi\right)\left(x+\frac{\varepsilon}{2} y\right) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \xi} \overline{\psi\left(x-x^{\prime}-\frac{\varepsilon}{2} y\right)} \psi\left(x-x^{\prime}+\frac{\varepsilon}{2} y\right) \\
& =(\mathcal{W}(\psi))\left(x-x^{\prime}, \xi\right)
\end{aligned}
$$

57. The Wigner transform: computations of Wigner transforms

Define the Wigner transform as in problem 56 but set $\varepsilon=1$.
(i) Compute the Wigner transform of $\psi(x)=\mathrm{e}^{+\mathrm{i} \xi_{c} x} \mathrm{e}^{-\frac{x^{2}}{2 b^{2}}}$. Explain at what point in \mathbb{R}^{2} the Wigner transformed function takes its maximum.
(ii) Which roles do the parameters b and ξ_{c} from part (i) play? What does the Wigner transform of $\psi\left(x-x_{c}\right)$ look like?
(iii) Compute the Wigner transform of $\varphi(x)=x \mathrm{e}^{-\frac{x^{2}}{4}}$.
(iv) Can the Wigner transform be interpreted as a classical state?

Solution:

(i) We plug ψ into the definition of the Wigner transform and obtain:

$$
\begin{aligned}
(\mathcal{W}(\psi))(x, \xi) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} \xi y} \overline{\psi\left(x-\frac{y}{2}\right)} \psi\left(x+\frac{y}{2}\right) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \mathrm{~d} y \mathrm{e}^{-\mathrm{i} \xi y} \mathrm{e}^{-\mathrm{i} \xi_{c}\left(x-\frac{y}{2}\right)} \mathrm{e}^{-\frac{\left(x-\frac{y}{2}\right)^{2}}{2^{2}}} \mathrm{e}^{+\mathrm{i} \xi_{c}\left(x+\frac{y}{2}\right)} \mathrm{e}^{-\frac{\left(x+\frac{y}{2}\right)^{2}}{2 b^{2}}} \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{d}} \mathrm{~d} y \mathrm{e}^{-\mathrm{i}\left(\xi_{c}-\xi\right) y} \mathrm{e}^{-\frac{x^{2}}{b^{2}}} \mathrm{e}^{-\frac{y^{2}}{4 b^{2}}} \\
& =\mathrm{e}^{-\frac{x^{2}}{b^{2}}}\left(2 \pi\left(2 b^{2}\right)^{-1}\right)^{-1 / 2} \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{-\frac{\left(\xi-\xi_{c}\right)^{2} 2 b^{2}}{2}} \\
& =\frac{b}{\sqrt{\pi}} \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{-b^{2}\left(\xi-\xi_{c}\right)^{2}}
\end{aligned}
$$

The wave packet is centered around the point $\left(0, \xi_{c}\right)$ in phase space.
(ii) The parameter b quantifies the width of the wave packet in real space. Since the widths in real and momentum space are inverses of one another, the state looks as follows:

ξ_{c} gives the position of the maximum in momentum space. The prefactor $\mathrm{e}^{-\mathrm{i} \xi_{c} \cdot x}$ shifts the wave packet in momentum space by ξ_{c}. Replacing x by $x-x_{c}$ translates the wave packet in real space:

(iii)

$$
\begin{aligned}
(\mathcal{W}(\varphi))(x, \xi) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \cdot \xi} \overline{\varphi\left(x-\frac{y}{2}\right)} \varphi\left(x+\frac{y}{2}\right) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \cdot \xi}\left(x-\frac{y}{2}\right)\left(x+\frac{y}{2}\right) \mathrm{e}^{-\frac{1}{4}\left[\left(x-\frac{y}{2}\right)^{2}+\left(x+\frac{y}{2}\right)^{2}\right]} \\
& =2 \mathrm{e}^{-\frac{x^{2}}{2}} \frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-\mathrm{i} y \cdot 2 \xi}\left(x^{2}-y^{2}\right) \mathrm{e}^{-\frac{y^{2}}{2}} \\
& =\pi^{-1} \mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{2} \mathrm{e}^{-2 \xi^{2}}+\frac{1}{4} \partial_{\xi}^{2}\left(\mathrm{e}^{-2 \xi^{2}}\right)\right) \\
& =\pi^{-1}\left(x^{2}+(2 \xi)^{2}-1\right) \mathrm{e}^{-2 x^{2}} \mathrm{e}^{-2 \xi^{2}} \nsupseteq 0 .
\end{aligned}
$$

58. Ground state of the cut off Lenard-Jones potential

Consider the hamiltonian $H_{\lambda}=-\partial_{x}^{2}+\lambda V, \lambda>0$, for the cut off Lenard-Jones potential

$$
V(x)= \begin{cases}\frac{1}{|x|^{12}}-\frac{1}{|x|^{6}} & |x| \geq 1 \\ 0 & |x|<1\end{cases}
$$

in one dimension.
(i) Show that there exists a $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$ the hamiltonian H_{λ} has a unique bound state of energy $E_{\lambda}<0$.
(ii) Compute E_{λ} to leading order in λ.

Solution:

(i) The function V is non-positive, has no singularity and decays as $|x|^{-6}$ for large $|x|$. Consequently, $V, x^{2} V \in L^{1}(\mathbb{R})$ and Theorem 9.3.7 applies, i. e. there exists $\lambda_{0}>0$ so that H_{λ} has a unique bound state of energy $E_{\lambda}<0$.
(ii) Equation (9.3.3) gives an explicit estimate on the value of $E_{\lambda}=-\frac{\lambda^{2}}{4}\|V\|_{L^{1}(\mathbb{R})}^{2}+\mathcal{O}\left(\lambda^{4}\right)$ to leading order, and hence, we need to compute

$$
\begin{aligned}
\int_{\mathbb{R}} \mathrm{d} x|V(x)| & =-2 \int_{1}^{\infty} \mathrm{d} x\left(\frac{1}{|x|^{12}}-\frac{1}{|x|^{6}}\right)=-2\left[\frac{x^{-11}}{-11}-\frac{x^{-5}}{-5}\right]_{1}^{\infty} \\
& =\frac{2}{5}-\frac{2}{11}=\frac{12}{55} \approx 0.218
\end{aligned}
$$

Plugged into equation (9.3.3) then yields

$$
E_{\lambda}=-\lambda^{2} \frac{6^{2}}{55^{2}}+\mathcal{O}\left(\lambda^{4}\right) \approx 0.0119 \cdot \lambda^{2}+\mathcal{O}\left(\lambda^{4}\right)
$$

