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Quantum Mechanics

Homework Problems
54. The energy functional for the quantum harmonic oscillator

Define the average energy
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x + V and ψ ∈ S(R), seen as the sum of kinetic energy
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and potential energy Eφ(V ).

Consider the case of the harmonic oscillator where V (x) = m
2 ω

2x2 is the potential energy and
ω > 0 the characteristic frequency of the oscillator. Moreover, define the family of scaled Gaußians
φλ(x) := π−1/4

√
λ e−λ2

2
x2 , λ > 0.

(i) Determine the expected value of the energy E(λ) := Eφλ
(H) as a function of λ.

(ii) Find the λmin which minimizes E(λ). Give the minimizing wavefunction φ0 := φλmin .
(iii) For which λ is the expected value of the kinetic energy small? What about the potential en-

ergy? Interpret your results.
(iv) Determine E0 ∈ R so that φ0 from (ii) satisfies the eigenvalue equation

Hφ0 = E0 φ0.

55. The free relativistic Schrödinger operator
Consider the free relativistic Schrödinger operatorH :=

√
m2 −∆x on L2(Rd) defined as in prob-

lem 4 of Test 2.
(i) Compute σ(H).
(ii) Determine the nature of the spectrum, i. e. determine σess(P ), σdisc(P ), σcont(P ) and σp(P ).
(iii) Are the eigenfunctions elements of the Hilbert space?

56. The Wigner transform: fundamental properties
The Wigner transform of a Schwartz function ψ ∈ S(R) is defined as(
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)
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where x is position and ξ is momentum.
(i) Show thatW(ψ) is a real-valued function on phase space R2.
(ii) Compute the marginals of the Wigner transform,∫
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(iii) Show
(
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)
(x, ξ) =
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)
(x− x′, ξ) where (Tx′ψ)(x) := ψ(x− x′).



57. The Wigner transform: computations of Wigner transforms
Define the Wigner transform as in problem 56 but set ε = 1.

(i) Compute theWigner transformofψ(x) = e+iξc x e−
x2

2b2 . Explain atwhat point inR2 theWigner
transformed function takes its maximum.

(ii) Which roles do the parameters b and ξc from part (i) play? What does the Wigner transform
of ψ(x− xc) look like?

(iii) Compute the Wigner transform of φ(x) = x e−x2

4 .
(iv) Can the Wigner transform be interpreted as a classical state?

58. Ground state of the cut off Lenard-Jones potential
Consider the hamiltonianHλ = −∂2x + λV , λ > 0, for the cut off Lenard-Jones potential

V (x) =

{
1

|x|12 − 1
|x|6 |x| ≥ 1

0 |x| < 1

in one dimension.
(i) Show that there exists a λ0 > 0 such that for all 0 < λ < λ0 the hamiltonianHλ has a unique

bound state of energy Eλ < 0.
(ii) Compute Eλ to leading order in λ.

Hand in homework on: Thursday, 6 March 2014, before class


