Differential Equations of Mathematical Physics (APM 351 Y)

2013–2014 Problem Sheet 17 (2014.02.27)

Quantum Mechanics

Homework Problems

54. The energy functional for the quantum harmonic oscillator

Define the average energy

$$\mathbb{E}_{\varphi}(H) := \int_{\mathbb{R}} dx \left(\frac{1}{2m} \left| \varphi'(x) \right|^2 + V(x) \left| \varphi(x) \right|^2 \right) =: \mathbb{E}_{\varphi} \left(-\frac{1}{2m} \partial_x^2 \right) + \mathbb{E}_{\varphi}(V)$$

associated to the hamiltonian $H=-\frac{1}{2m}\partial_x^2+V$ and $\psi\in\mathcal{S}(\mathbb{R})$, seen as the sum of kinetic energy $\mathbb{E}_{\varphi}\left(-\frac{1}{2m}\partial_x^2\right)$ and potential energy $\mathbb{E}_{\varphi}(V)$.

Consider the case of the harmonic oscillator where $V(x)=\frac{m}{2}\omega^2x^2$ is the potential energy and $\omega>0$ the characteristic frequency of the oscillator. Moreover, define the family of scaled Gaußians $\varphi_\lambda(x):=\pi^{-1/4}\,\sqrt{\lambda}\,\mathrm{e}^{-\frac{\lambda^2}{2}x^2}$, $\lambda>0$.

- (i) Determine the expected value of the energy $E(\lambda):=\mathbb{E}_{\varphi_{\lambda}}(H)$ as a function of λ .
- (ii) Find the λ_{\min} which minimizes $E(\lambda)$. Give the minimizing wavefunction $\varphi_0 := \varphi_{\lambda_{\min}}$.
- (iii) For which λ is the expected value of the kinetic energy small? What about the potential energy? Interpret your results.
- (iv) Determine $E_0 \in \mathbb{R}$ so that φ_0 from (ii) satisfies the eigenvalue equation

$$H\varphi_0=E_0\,\varphi_0.$$

55. The free relativistic Schrödinger operator

Consider the free relativistic Schrödinger operator $H:=\sqrt{m^2-\Delta_x}$ on $L^2(\mathbb{R}^d)$ defined as in problem 4 of Test 2.

- (i) Compute $\sigma(H)$.
- (ii) Determine the nature of the spectrum, i. e. determine $\sigma_{\rm ess}(P)$, $\sigma_{\rm disc}(P)$, $\sigma_{\rm cont}(P)$ and $\sigma_{\rm p}(P)$.
- (iii) Are the eigenfunctions elements of the Hilbert space?

56. The Wigner transform: fundamental properties

The Wigner transform of a Schwartz function $\psi \in \mathcal{S}(\mathbb{R})$ is defined as

$$(\mathcal{W}(\psi))(x,\xi) := \frac{1}{2\pi} \int_{\mathbb{R}} dy \, e^{-iy\xi} \, \overline{\psi(x - \frac{\varepsilon}{2}y)} \, \psi(x + \frac{\varepsilon}{2}y)$$

where x is position and ξ is momentum.

- (i) Show that $W(\psi)$ is a real-valued function on phase space \mathbb{R}^2 .
- (ii) Compute the marginals of the Wigner transform,

$$\int_{\mathbb{R}} dx \left(\mathcal{W}(\psi) \right) (x, \xi), \qquad \int_{\mathbb{R}} d\xi \left(\mathcal{W}(\psi) \right) (x, \xi), \qquad \int_{\mathbb{R}^2} dx \, d\xi \left(\mathcal{W}(\psi) \right) (x, \xi).$$

(iii) Show $(\mathcal{W}(T_{x'}\psi))(x,\xi) = (\mathcal{W}(\psi))(x-x',\xi)$ where $(T_{x'}\psi)(x) := \psi(x-x')$.

57. The Wigner transform: computations of Wigner transforms

Define the Wigner transform as in problem 56 but set $\varepsilon = 1$.

- (i) Compute the Wigner transform of $\psi(x) = e^{+i\xi_c x} e^{-\frac{x^2}{2b^2}}$. Explain at what point in \mathbb{R}^2 the Wigner transformed function takes its maximum.
- (ii) Which roles do the parameters b and ξ_c from part (i) play? What does the Wigner transform of $\psi(x-x_c)$ look like?
- (iii) Compute the Wigner transform of $\varphi(x)=x\,\mathrm{e}^{-\frac{x^2}{4}}$.
- (iv) Can the Wigner transform be interpreted as a classical state?

58. Ground state of the cut off Lenard-Jones potential

Consider the hamiltonian $H_{\lambda}=-\partial_x^2+\lambda V$, $\lambda>0$, for the cut off Lenard-Jones potential

$$V(x) = \begin{cases} \frac{1}{|x|^{12}} - \frac{1}{|x|^6} & |x| \ge 1\\ 0 & |x| < 1 \end{cases}$$

in one dimension.

- (i) Show that there exists a $\lambda_0>0$ such that for all $0<\lambda<\lambda_0$ the hamiltonian H_λ has a unique bound state of energy $E_\lambda<0$.
- (ii) Compute E_{λ} to leading order in λ .

Hand in home work on: Thursday, 6 March 2014, before class