Quantum Mechanics

Homework Problems

59. The Landau hamiltonian

Consider $H^{A}=\left(-\mathrm{i} \nabla_{x}-A\right)^{2}$ in $d=2$ where A is a vector potential to the constant magnetic field $B=\partial_{x_{1}} A_{2}-\partial_{x_{2}} A_{1}=$ const.
(i) Show that the Landau vector potential

$$
A_{\mathrm{L}}(x)=B\binom{-x_{2}}{0}
$$

is a vector potential to $B=$ const.
(ii) Show that A_{L} is gauge-equivalent to

$$
A_{\mathrm{s}}=\frac{B}{2}\binom{-x_{2}}{x_{1}}
$$

i. e. find a function ϕ so that $A_{\mathrm{s}}=A_{\mathrm{L}}+\nabla_{x} \phi$.
(iii) Prove $H^{A_{\mathrm{s}}}=\mathrm{e}^{+\mathrm{i} \phi} H^{A_{\mathrm{L}}} \mathrm{e}^{-\mathrm{i} \phi}$.
(iv) Show that the Landau hamiltonian is unitarily equivalent to a shifted harmonic oscillator

$$
H_{\mathrm{osc}}(\hat{\xi}):=-\partial_{x}^{2}+(B \hat{x}+\hat{\xi})^{2}
$$

acting on a dense subset of $L^{2}\left(\mathbb{R}^{2}\right)$.

Solution:

(i) $B(x)=\partial_{x_{1}} A_{\mathrm{L} 2}-\partial_{x_{2}} A_{\mathrm{L} 1}=-\partial_{x_{2}}\left(-B x_{2}\right)=B$
(ii) The difference of the two vector potentials is

$$
A_{\mathrm{s}}(x)-A_{\mathrm{L}}(x)=\frac{B}{2}\binom{-x_{2}}{x_{1}}-B\binom{-x_{2}}{0}=\frac{B}{2}\binom{x_{2}}{x_{1}}
$$

and thus we can choose $\phi(x)=\frac{B}{2} x_{1} x_{2}$.
(iii)

$$
\begin{aligned}
\mathrm{e}^{+\mathbf{i} \phi} H^{A_{\mathrm{L}}} \mathrm{e}^{-\mathrm{i} \phi} \psi & =\mathrm{e}^{+\mathbf{i} \frac{B}{2} x_{1} x_{2}}\left(\left(-\mathbf{i} \partial_{x_{1}}+B x_{2}\right)^{2}-\partial_{x_{2}}^{2}\right)\left(\mathrm{e}^{-\mathrm{i} \frac{B}{2} x_{1} x_{2}} \psi\right) \\
& =\mathrm{e}^{+\mathrm{i} \frac{B}{2} x_{1} x_{2}} \mathrm{e}^{-\mathrm{i} \frac{B}{2} x_{1} x_{2}}\left(\left(-\mathbf{i} \partial_{x_{1}}+\mathrm{i}^{2} \frac{B}{2} x_{2}+B x_{2}\right)^{2}+\left(-\mathrm{i} \partial_{x_{2}}-\frac{B}{2} x_{1}\right)^{2}\right) \psi \\
& =H^{A_{\mathrm{s}}} \psi
\end{aligned}
$$

(iv) Start with $H^{A_{\mathrm{L}}}$ and define the partial Fourier transform

$$
\left(\mathcal{F}_{1} \psi\right)\left(\xi, x_{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x_{1} \mathrm{e}^{-\mathrm{i} \xi x_{1}} \psi\left(x_{1}, x_{2}\right)
$$

which acts only on x_{1}. Then we can reduce

$$
\mathcal{F}_{1} H^{A_{\mathrm{L}}} \mathcal{F}^{-1}=-\partial_{x_{2}}^{2}+\left(B x_{2}+\hat{\xi}\right)^{2}=H_{\mathrm{osc}}(\hat{\xi})
$$

to the shifted harmonic oscillator hamiltonian.

60. Magnetic translations (17 points)

Consider the magnetic Schrödinger operator $H^{A}=\left(-i \nabla_{x}-A\right)^{2}$ on $L^{2}\left(\mathbb{R}^{3}\right)$. Moreover, define magnetic translations

$$
\left(T_{y}^{A} \psi\right)(x):=\mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A} \psi(x+y)
$$

where $y \in \mathbb{R}^{d}$ and

$$
\int_{[x, x+y]} A=\int_{0}^{1} \mathrm{~d} s y \cdot A(x+s y)
$$

is the magnetic circulation along the line-segment $[x, x+y]$.
(i) Show the kinetic momentum operator $\mathrm{P}_{j}^{A}=-\mathrm{i} \partial_{x_{j}}-A_{j}$ commutes with magnetic translations along the x_{j}-direction.
(ii) Find the phase function $\mathrm{e}^{-\mathrm{i} \omega(x, y, z)}$ so that

$$
\left(T_{y}^{A} T_{z}^{A} \psi\right)(x)=\mathrm{e}^{-\mathrm{i} \omega(x, y, z)}\left(T_{y+z}^{A} \psi\right)(x)
$$

Give a physical interpretation of ω.
Hint: Use Stoke's Theorem.
(iii) Do magnetic translations commute?

Solution:

(i) We begin by computing

$$
\begin{aligned}
\partial_{x_{j}} \int_{[x, x+y]} A & \stackrel{[1]}{=} \partial_{x_{j}} \int_{0}^{1} \mathrm{~d} s y_{j} A_{j}(x+s y) \stackrel{[1]}{=} \int_{0}^{1} \mathrm{~d} s y_{j} \partial_{x_{j}} A_{j}(x+s y) \\
& \stackrel{[1]}{=} \int_{0}^{1} \mathrm{~d} s \frac{\mathrm{~d}}{\mathrm{~d} s} A_{j}(x+s y) \stackrel{[1]}{=} A_{j}(x+y)-A_{j}(x) .
\end{aligned}
$$

This will give the crucial cancellation in the following calculation:

$$
\begin{aligned}
&\left(\mathrm{P}_{j}^{A} T_{y}^{A} \psi\right)(x) \stackrel{[1]}{=}\left(\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(\hat{x})\right)\left(T_{y}^{A} \psi\right)\right)(x) \\
& \stackrel{[1]}{=}\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(x)\right)\left(\mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A} \psi(x+y)\right) \\
& \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A}\left(-\mathrm{i} \partial_{x_{j}} \psi(x+y)-A_{j}(x)+\right. \\
&\left.\quad+\mathrm{i}^{2}\left(A_{j}(x+y)-A_{j}(x)\right) \psi(x+y)\right) \\
& \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A}\left(-\mathrm{i} \partial_{x_{j}}-A_{j}(x+y)\right) \psi(x+y) \\
& \stackrel{[1]}{=}\left(T_{y}^{A}\left(-\mathrm{i} \partial_{x_{j}}-A(\hat{x})\right) \psi\right)(x) \stackrel{[1]}{=}\left(T_{y}^{A} \mathrm{P}_{j}^{A} \psi\right)(x)
\end{aligned}
$$

In other words, we have shown $\left[T_{y}^{A}, \mathrm{P}_{j}\right]=0$.
(ii) We obtain the phase factor $\mathrm{e}^{-\mathrm{i} \omega(x, y, z)}$ by executing the magnetic translations along y and z, and then adding and subtracting the missing phase factor so as to combine to a magnetic
translation by $y+z$:

$$
\begin{aligned}
\left(T_{y}^{A} T_{z}^{A} \psi\right)(x) & \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A}\left(T_{z}^{A} \psi\right)(x+y) \\
& \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A} \mathrm{e}^{-\mathrm{i} \int_{[x+y, x+y+z]} A} \psi(x+y+z) \\
& \stackrel{[1]}{=} \mathrm{e}^{-\mathrm{i} \int_{[x, x+y]} A} \mathrm{e}^{-\mathrm{i} \int_{[x+y, x+y+z]} A} \mathrm{e}^{+\mathrm{i} \int_{[x, x+y+z]} A}\left(T_{y+z}^{A} \psi\right)(x) \\
& =: \mathrm{e}^{-\mathrm{i} \omega(x, y, z)}\left(T_{y+z}^{A} \psi\right)(x)
\end{aligned}
$$

The crucial point here is Stoke's theorem to convert the sum of the line integrals to an integral over the enclosed surface: concretely, the three line integrals trace the borders of the triangle $\Delta(x, x+y, x+y+z)$ with corners $x, x+y$ and $x+y+z$. Thus, the phase factor is the magnetic flux through the triangle,

$$
\begin{aligned}
\omega(x, y, z) & \stackrel{[1]}{=} \int_{[x, x+y]} A+\int_{[x+y, x+y+z]} A-\int_{[x, x+y+z]} A \\
& \stackrel{[1]}{=} \int_{\Delta(x, x+y, x+y+z)} \nabla_{x} \times A \stackrel{[1]}{=} \int_{\Delta(x, x+y, x+y+z)} B .
\end{aligned}
$$

(iii) No, because usually $\mathrm{e}^{-\mathrm{i} \omega(x, y, z)} \neq \mathrm{e}^{-\mathrm{i} \omega(x, z, y)}$, they are magnetic fluxes through triangles with different corners. [1]
61. Number of negative eigenvalues of a Schrödinger operator

Consider $H(V):=-\Delta_{x}+V$. Assume V and W are potentials so that (i) $H(V)$ and $H(W)$ define selfadjoint operators on a common domain \mathcal{D} and (ii) $\sigma_{\text {ess }}(H(V))=\sigma_{\text {ess }}(H(W))=[0,+\infty)$. Define $E_{n}(V)$ for the operator $H(V)$ as in Chapter 9.3.3.2 and let $N(V)$ to be the number of negative eigenvalues of $H(V)$.
Show that $V \leq W$ implies $E_{n}(V) \leq E_{n}(W), n \in \mathbb{N}_{0}$, as well as $N(V) \geq N(W)$.

Solution:

$V \leq W$ implies $H(V) \leq H(W)$. More precisely, for any $\psi \in \mathcal{D}$ we have

$$
\langle\psi, H(V) \psi\rangle \leq\langle\psi, H(W) \psi\rangle
$$

and consequently

$$
\begin{aligned}
E_{n}(V) & =\sup _{\substack{\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{D} \\
\left\langle\varphi_{j}, \varphi_{k}\right\rangle=\delta_{j k}}} \inf _{\psi \in\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}^{\perp}}^{\|\psi\|=1} \mid \\
& \leq \sup _{\substack{\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{D} \\
\left\langle\varphi_{j}, \varphi_{k}\right\rangle=\delta_{j k}}} \inf _{\substack{\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}^{\perp} \\
\|\psi\|=1}}\langle\psi, H(V) \psi\rangle \\
& \langle\psi, H) \psi\rangle=E_{n}(W) .
\end{aligned}
$$

The number of eigenvalues is defined as

$$
N(V)=\left\{N \in \mathbb{N} \mid E_{n}(V)<0 \forall n \leq N, \text { and } E_{n}(V)=0 \forall n>N\right\} \in \mathbb{N}_{0} \cup\{+\infty\}
$$

Given that $E_{n}(V)=0$ necessarily implies $E_{n}(W)=0$ because the essential spectrum always starts at 0 , and hence $N(V) \geq N(W)$.

62. Birman-Schwinger principle for potential without fixed sign

Consider the Schrödinger operator $H=-\Delta_{x}+V$ for a potential that does not have a fixed sign, i. e. $V \not \leq 0$. Moreover, define the signed square root

$$
V^{1 / 2}(x):=\operatorname{sgn}(V(x))|V(x)|^{1 / 2}
$$

and for $E>0$ the Birman-Schwinger operator

$$
K_{E}:=|V|^{1 / 2}\left(-\Delta_{x}+E\right)^{-1} V^{1 / 2}
$$

Show that H has an eigenvalue at $-E$ if and only if K_{E} has an eigenvalue at -1 . (The difference in sign is deliberate in order to conform to established sign conventions.)

Solution:

Assume ψ is an eigenvector of H to $-E$. Then

$$
H \psi=\left(-\Delta_{x}+V\right) \psi=-E \psi
$$

is equivalent to

$$
\left(-\Delta_{x}+E\right) \psi=-V \psi=-V^{1 / 2} \varphi
$$

where we have defined $\varphi:=|V|^{1 / 2} \psi$. As $E>0,-E \notin \sigma\left(-\Delta_{x}\right)=[0,+\infty)$ and so the operator on the left-hand side is invertible. Bringing it to the other side and multiplying both sides by $|V|^{1 / 2}$ yields

$$
|V|^{1 / 2} \psi=\varphi=-|V|^{1 / 2}\left(-\Delta_{x}+E\right)^{-1} V^{1 / 2} \varphi
$$

Put another way, $-E$ is an eigenvalue of H with eigenfunction ψ if and only if -1 is an eigenvalue of K_{E} with eigenfunction $\varphi=|V|^{1 / 2} \psi$.

