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Quantum Mechanics

Homework Problems

59. The Landau hamiltonian

Consider HA = (—ivx — A)2 in d = 2 where A is a vector potential to the constant magnetic field
B = 0;,A2 — 0;,A1 = const.

(i) Show that the Landau vector potential

A(z) =B <‘§2)

is a vector potential to B = const.

(ii) Show that A; is gauge-equivalent to

i)
2 T
i. e. find a function ¢ so that A; = Ay + V,¢.
(iii) Prove HAs = eti® AL g~1¢,
(iv) Show that the Landau hamiltonian is unitarily equivalent to a shifted harmonic oscillator
- . 2N2
Hosc(§) = —3% + (Bx + f)

acting on a dense subset of L?(R?).

Solution:
(i) B(z) = 0y, ALo — Op, ALt = —04, (—Ba) = B

(ii) The difference of the two vector potentials is

Ay(z) — Au(w) = § (_@?) -B <_§2> - g <Z>

and thus we can choose ¢(z) = g T1T9.
(iii)
et AL g=idy), — etigmie ((—i&,;1 + BZL'2)2 - 8%2) (e_iga””’%/))
— e+igx1x2 efigm:):z ((_iaxl +i2 ng + Bx2)2 + (_iaaC2 _ §x1)2) "
= H™%y



(iv) Start with HA and define the partial Fourier transform

(F1p) (&, 22) = \/12? /Rdm e Yy, 22)

which acts only on z1. Then we can reduce

FIHYF' = —92 + (Bra +€)* = Howe(€)

to the shifted harmonic oscillator hamiltonian.



60. Magnetic translations (17 points)

Consider the magnetic Schrédinger operator H4 = (—iV, — A)? on L?(R3). Moreover, define
magnetic translations

(T ) (@) = e i Mg 1)

where y € R% and

1
/ Az/dsy-A(x—ksy)
[z,z+y] 0

is the magnetic circulation along the line-segment [z, = + y|.

(i) Show the kinetic momentum operator P;‘ = —i0,, — A; commutes with magnetic translations
along the z;-direction.

(ii) Find the phase function e “(#:¥:2) so that

(TAT2Y) (z) = e w02 (T ) (2).

Give a physical interpretation of w.
Hint: Use Stoke’s Theorem.

(iii) Do magnetic translations commute?

Solution:

(i) We begin by computing
1y ' y [t
o, [ Ao, [ dsyAs@rsy) D [ dsys 045+ sy)
[z.2+y 0 0
tod
[ s i+ A+ - 40
0 S
This will give the crucial cancellation in the following calculation:

(PATAY) (z) & ( (—i0s; — Aj(&)) (T, ¢)) ()
I

Do oot (=i, (o +y) — Aj(o)+
2 (Aj (2 +y) — 45(2)) (o + 1))
W o= fio v 4 (—18 —Aj(x+ y))z/J(m +v)
(1] . . [
= (T (=10, — A@)0) (2) = (T, P (@)
In other words, we have shown [TyA, P;] = 0.

(ii) We obtain the phase factor e “(*:¥:%) by executing the magnetic translations along y and z,
and then adding and subtracting the missing phase factor so as to combine to a magnetic



translation by y + z:

(TATAY) (2) E e Hiearn A (T49) (2 + y)

1 s
Q e lf[w,wﬂl]

(1

A e Hwrvarvra Az + y + 2)

A

e et A o ity atvra A o e oty 4 (Tﬁzw) (7)

= e W) (T4 ) ()

The crucial point here is Stoke’s theorem to convert the sum of the line integrals to an integral
over the enclosed surface: concretely, the three line integrals trace the borders of the triangle
A(x,x+y,x+y—+z) with corners z, x+y and x +y+ z. Thus, the phase factor is the magnetic
flux through the triangle,

(1]

w(z,y,z) =

A+ / A— A
[z,2+] [z+y,x+y+2] [z,2+y+2]

] / Ve x A B / B.
A(z,z4y,2+y+2) A(z,z+y,2+y+2)

(iii) No, because usually e w(#:v:2) £ e~1w(=.2.9) they are magnetic fluxes through triangles with
different corners. [1]



61. Number of negative eigenvalues of a Schrédinger operator

Consider H(V) := —A, + V. Assume V and W are potentials so that (i) H(V') and H (V) define
selfadjoint operators on a common domain D and (ii) oess (H (V)) = COess (H (W)) = [0, +00).
Define E,, (V') for the operator H (V') as in Chapter 9.3.3.2 and let N (V) to be the number of negative
eigenvalues of H (V).

Show that V' < W implies E,, (V) < E,(W),n € Ny, aswellas N(V) > N(W).

Solution:

V < W implies H(V') < H(W). More precisely, for any 1) € D we have

(¥, HV)) < (¢, HW)p),

and consequently

E, (V)= sup inf <w,H(V)7,/J>
1,0 €D YE{ @1, on It
(j,Pr)=01 llv][=1
< sup inf  (w, HOW)) = Ea(W).
©1,--,pn €D we{@h'“’@n}l
(@j,pr)=0; llv][=1

The number of eigenvalues is defined as
N(V)={NeN | E,(V)<0¥n<N, and E,(V) =0¥n > N} € Ng U {+oc}.

Given that F,, (V') = 0 necessarily implies E,, (W) = 0 because the essential spectrum always starts
at 0, and hence N (V') > N(W).



62. Birman-Schwinger principle for potential without fixed sign

Consider the Schrodinger operator H = —A, + V for a potential that does not have a fixed sign,
i.e. V £ 0. Moreover, define the signed square root

VY2 (2) == sgn(V(x)) |V (z)["?
and for E > 0 the Birman-Schwinger operator
Kp:= V| (=A, + E) ' V2,

Show that H has an eigenvalue at — F if and only if Kz has an eigenvalue at —1. (The difference in
sign is deliberate in order to conform to established sign conventions.)

Solution:

Assume 1) is an eigenvector of H to —E. Then
Hy = (-2 + V) = ~Ev
is equivalent to
(A +E)p=-Vip=-V"0p

where we have defined ¢ := |V|1/2 Y. AsE > 0,—FE ¢ o(—A,) = [0,+00) and so the operator
on the left-hand side is invertible. Bringing it to the other side and multiplying both sides by [V|"/2
yields

VI =p=— V|V (~A, + E) " VY20

Put another way, — F is an eigenvalue of H with eigenfunction v if and only if —1 is an eigenvalue
of K5 with eigenfunction ¢ = |V|2 .



