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Homework Problems

59. The Landau hamiltonian
ConsiderHA =

(
−i∇x−A

)2 in d = 2 whereA is a vector potential to the constant magnetic field
B = ∂x1A2 − ∂x2A1 = const.
(i) Show that the Landau vector potential

AL(x) = B

(
−x2
0

)
is a vector potential to B = const.

(ii) Show that AL is gauge-equivalent to

As =
B

2

(
−x2
x1

)
,

i. e. find a function ϕ so that As = AL +∇xϕ.
(iii) ProveHAs = e+iϕHAL e−iϕ.
(iv) Show that the Landau hamiltonian is unitarily equivalent to a shifted harmonic oscillator

Hosc(ξ̂) := −∂2x +
(
Bx̂+ ξ̂

)2
acting on a dense subset of L2(R2).

Solution:

(i) B(x) = ∂x1AL 2 − ∂x2AL 1 = −∂x2
(
−B x2

)
= B

(ii) The difference of the two vector potentials is

As(x)−AL(x) =
B

2

(
−x2
x1

)
−B

(
−x2
0

)
=
B

2

(
x2
x1

)
and thus we can choose ϕ(x) = B

2 x1x2.
(iii)

e+iϕHAL e−iϕψ = e+iB
2
x1x2

((
−i∂x1 +Bx2

)2 − ∂2x2

) (
e−iB

2
x1x2ψ

)
= e+iB

2
x1x2 e−iB

2
x1x2

((
−i∂x1 + i2 B2 x2 +Bx2

)2
+

(
−i∂x2 − B

2 x1
)2)

ψ

= HAsψ
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(iv) Start withHAL and define the partial Fourier transform

(
F1ψ

)
(ξ, x2) =

1√
2π

∫
R
dx1 e−iξx1 ψ(x1, x2)

which acts only on x1. Then we can reduce

F1H
AL F−1 = −∂2x2 +

(
Bx2 + ξ̂

)2
= Hosc(ξ̂)

to the shifted harmonic oscillator hamiltonian.
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60. Magnetic translations (17 points)
Consider the magnetic Schrödinger operator HA = (−i∇x − A)2 on L2(R3). Moreover, define
magnetic translations (

TAy ψ
)
(x) := e−i

R

[x,x+y] A ψ(x+ y)

where y ∈ Rd and ∫
[x,x+y]

A =

∫ 1

0
ds y ·A(x+ sy)

is the magnetic circulation along the line-segment [x, x+ y].
(i) Show the kinetic momentum operator PAj = −i∂xj − Aj commutes with magnetic translations

along the xj-direction.
(ii) Find the phase function e−iω(x,y,z) so that(

TAy T
A
z ψ

)
(x) = e−iω(x,y,z) (TAy+zψ)(x).

Give a physical interpretation of ω.
Hint: Use Stoke’s Theorem.

(iii) Do magnetic translations commute?

Solution:

(i) We begin by computing

∂xj

∫
[x,x+y]

A
[1]
= ∂xj

∫ 1

0
ds yj Aj(x+ sy)

[1]
=

∫ 1

0
ds yj ∂xjAj(x+ sy)

[1]
=

∫ 1

0
ds d

dsAj(x+ sy)
[1]
= Aj(x+ y)−Aj(x).

This will give the crucial cancellation in the following calculation:(
PAj T

A
y ψ

)
(x)

[1]
=

((
−i∂xj −Aj(x̂)

)(
TAy ψ

))
(x)

[1]
=

(
−i∂xj −Aj(x)

)(
e−i

R

[x,x+y] A ψ(x+ y)
)

[1]
= e−i

R

[x,x+y] A
(
−i∂xjψ(x+ y)−Aj(x)+

+i2
(
Aj(x+ y)−Aj(x)

)
ψ(x+ y)

)
[1]
= e−i

R

[x,x+y] A
(
−i∂xj −Aj(x+ y)

)
ψ(x+ y)

[1]
=

(
TAy

(
−i∂xj −A(x̂)

)
ψ
)
(x)

[1]
=

(
TAy PAj ψ

)
(x)

In other words, we have shown [TAy , Pj ] = 0.

(ii) We obtain the phase factor e−iω(x,y,z) by executing the magnetic translations along y and z,
and then adding and subtracting the missing phase factor so as to combine to a magnetic
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translation by y + z:(
TAy T

A
z ψ

)
(x)

[1]
= e−i

R

[x,x+y] A
(
TAz ψ

)
(x+ y)

[1]
= e−i

R

[x,x+y] A e−i
R

[x+y,x+y+z] A ψ(x+ y + z)

[1]
= e−i

R

[x,x+y] A e−i
R

[x+y,x+y+z] A e+i
R

[x,x+y+z] A
(
TAy+zψ

)
(x)

=: e−iω(x,y,z) (TAy+zψ)(x)
The crucial point here is Stoke’s theorem to convert the sum of the line integrals to an integral
over the enclosed surface: concretely, the three line integrals trace the borders of the triangle
∆(x, x+y, x+y+z)with corners x, x+y and x+y+z. Thus, the phase factor is themagnetic
flux through the triangle,

ω(x, y, z)
[1]
=

∫
[x,x+y]

A+

∫
[x+y,x+y+z]

A−
∫
[x,x+y+z]

A

[1]
=

∫
∆(x,x+y,x+y+z)

∇x ×A
[1]
=

∫
∆(x,x+y,x+y+z)

B.

(iii) No, because usually e−iω(x,y,z) ̸= e−iω(x,z,y), they are magnetic fluxes through triangles with
different corners. [1]
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61. Number of negative eigenvalues of a Schrödinger operator
ConsiderH(V ) := −∆x + V . Assume V andW are potentials so that (i)H(V ) andH(W ) define
selfadjoint operators on a common domain D and (ii) σess

(
H(V )

)
= σess

(
H(W )

)
= [0,+∞).

DefineEn(V ) for the operatorH(V ) as in Chapter 9.3.3.2 and letN(V ) to be the number of negative
eigenvalues ofH(V ).
Show that V ≤W implies En(V ) ≤ En(W ), n ∈ N0, as well asN(V ) ≥ N(W ).

Solution:
V ≤W impliesH(V ) ≤ H(W ). More precisely, for any ψ ∈ D we have⟨

ψ,H(V )ψ
⟩
≤

⟨
ψ,H(W )ψ

⟩
,

and consequently

En(V ) = sup
φ1,...,φn∈D
⟨φj ,φk⟩=δjk

inf
ψ∈{φ1,...,φn}⊥

∥ψ∥=1

⟨
ψ,H(V )ψ

⟩
≤ sup

φ1,...,φn∈D
⟨φj ,φk⟩=δjk

inf
ψ∈{φ1,...,φn}⊥

∥ψ∥=1

⟨
ψ,H(W )ψ

⟩
= En(W ).

The number of eigenvalues is defined as

N(V ) =
{
N ∈ N | En(V ) < 0 ∀n ≤ N, and En(V ) = 0 ∀n > N

}
∈ N0 ∪ {+∞}.

Given thatEn(V ) = 0 necessarily impliesEn(W ) = 0 because the essential spectrum always starts
at 0, and henceN(V ) ≥ N(W ).
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62. Birman-Schwinger principle for potential without fixed sign
Consider the Schrödinger operator H = −∆x + V for a potential that does not have a fixed sign,
i. e. V ̸≤ 0. Moreover, define the signed square root

V
1/2(x) := sgn

(
V (x)

)
|V (x)|1/2

and for E > 0 the Birman-Schwinger operator

KE := |V |1/2
(
−∆x + E

)−1
V

1/2.

Show thatH has an eigenvalue at−E if and only ifKE has an eigenvalue at−1. (The difference in
sign is deliberate in order to conform to established sign conventions.)

Solution:
Assume ψ is an eigenvector ofH to−E. Then

Hψ =
(
−∆x + V

)
ψ = −E ψ

is equivalent to (
−∆x + E

)
ψ = −V ψ = −V 1/2 φ

where we have defined φ := |V |1/2 ψ. As E > 0, −E ̸∈ σ(−∆x) = [0,+∞) and so the operator
on the left-hand side is invertible. Bringing it to the other side and multiplying both sides by |V |1/2
yields

|V |1/2 ψ = φ = − |V |1/2
(
−∆x + E

)−1
V

1/2φ.

Put another way,−E is an eigenvalue ofH with eigenfunction ψ if and only if−1 is an eigenvalue
ofKE with eigenfunction φ = |V |1/2 ψ.
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