Functionals

Homework Problems

63. The Abraham model (21 points)

The Abraham model describes a particle with a rigid charged density $\chi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right), \int_{\mathbb{R}^{3}} \mathrm{~d} x \chi(x)=$ 1 , coupled to an electromagnetic field. Here, rigid means that the charge distribution does not change in time. Moreover, we define $\phi_{\chi}=\chi * \phi$ and $A_{\chi}=\chi * A$ to be the smoothened potentials obtained by convolving ϕ and the components of A with the charge density χ.
The Lagrange function of this system is

$$
L(q(t), \dot{q}(t), A(t), \phi(t), \dot{A}(t), \dot{\phi}(t)):=L_{p}(q(t), \dot{q}(t), A(t), \phi(t))+L_{\mathrm{em}}(A(t), \phi(t), \dot{A}(t), \dot{\phi}(t))
$$

which is comprised of the particle Lagrangian

$$
L_{p}(x, v, A, \phi)=\frac{m}{2} v^{2}-\phi_{\chi}(x)+v \cdot A_{\chi}(x)
$$

and the field Lagrangian

$$
L_{\mathrm{em}}(A, \phi, \dot{A}, \dot{\phi})=\frac{1}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} x\left(\left(-\partial_{t} A(t, x)-\nabla_{x} \phi(t, x)\right)^{2}-\left(\nabla_{x} \times A(t, x)\right)^{2}\right)
$$

(i) Verify that $\rho(t, x)=\chi(x-q(t))$ and $j(t, x)=\chi(x-q(t)) \dot{q}(t)$ satisfy charge conservation.
(ii) Give the action functional associated to the Lagrange function L.
(iii) Derive the Euler-Lagrange equations.
(iv) Compute the equations of motion in terms of the electric field \mathbf{E} and magnetic field \mathbf{B}.

Hint: The equations of motion also involve $\mathbf{E}_{\chi}=\chi * \mathbf{E}$ and $\mathbf{B}_{\chi}=\chi * \mathbf{B}$.
Note: Coupling the Maxwell and the Newton equations for a particle with point charge $\chi=\delta$ leads to equations which are ill-defined, and it turns out to be necessary to smear out the charge over a small region.

The interested reader may read the discussion in Chapter 2-2.4 of Herbert Spohn's book "Dynamics of Charged Particles", Cambridge University Press, 2004.

Solution:

Unfortunately there was a sign mistake ($-A \cdot v$ rather than $+A \cdot v$ in L_{p}).
(i) We compute the time derivative of the charge density,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t, x)=\frac{\mathrm{d}}{\mathrm{~d} t} \chi(x-q(t)) \stackrel{[1]}{=}-\nabla_{x} \chi(x-q(t)) \dot{q}(t),
$$

and the divergence of the current density,

$$
\nabla_{x} \cdot j(t, x) \stackrel{[1]}{=} \nabla_{x} \chi(x-q(t)) \dot{q}(t)
$$

and see that they are equal up to a sign, $\partial_{t} \rho+\nabla_{x} \cdot j=0$ [1].
(ii) $S(q, A, \phi)=\int_{0}^{T} \mathrm{~d} t\left(L_{p}(q(t), \dot{q}(t), A(t), \phi(t))+L_{\mathrm{em}}(A(t), \phi(t), \dot{A}(t), \dot{\phi}(t))\right)$ [2]
(iii) Let us compute the Euler-Lagrange equations from first principles:

$$
\begin{aligned}
& (\mathrm{d} S(q, A, \phi))(h, a, \varphi)= \\
& \begin{array}{r}
\stackrel{[1]}{=} \int_{0}^{T} \mathrm{~d} t \frac{\mathrm{~d}}{\mathrm{~d} s}\left(L_{p}(q(t)+s h(t), \dot{q}(t)+s \dot{h}(t), A(t)+s a(t), \phi(t)+s \varphi(t))+\right. \\
\left.\quad+L_{\mathrm{em}}(A(t)+s a(t), \phi(t)+s \varphi(t), \dot{A}(t)+s \dot{a}(t), \dot{\phi}(t)+s \dot{\varphi}(t))\right)\left.\right|_{s=0}
\end{array} \\
& \begin{array}{r}
\stackrel{[3]}{=} \int_{0}^{T} \mathrm{~d} t\left(\left(m \dot{q}(t)+A_{\chi}(t, q(t))\right) \cdot \dot{h}(t)-\nabla_{x} \phi_{\chi}(t, q(t)) \cdot h(t)+\right. \\
\left.\quad+\sum_{j=1}^{3} \dot{q}_{j}(t) \nabla_{x} a_{\chi, j}(t, q(t)) \cdot h(t)-\varphi_{\chi}(t, q(t))+\dot{q}(t) \cdot a_{\chi}(t, q(t))\right)+ \\
\quad+\int_{0}^{T} \mathrm{~d} t \int_{\mathbb{R}^{3}} \mathrm{~d} x\left(\left(-\partial_{t} A(t, x)-\nabla_{x} \phi(t, x)\right) \cdot\left(-\partial_{t} a(t, x)-\nabla_{x} \varphi(t, x)\right)+\right. \\
\left.\quad-\left(\nabla_{x} \times A(t, x)\right) \cdot\left(\nabla_{x} \times a(t, x)\right)\right)
\end{array} \\
& \stackrel{*,[3]=}{=} \sum_{k=1}^{3} \int_{0}^{T} \mathrm{~d} t\left(m \ddot{q}_{k}(t)+\partial_{t} A_{\chi, k}(t, q(t))+\partial_{x_{k}} \phi_{\chi}(t, q(t))+\right. \\
& \left.\quad+\sum_{j=1}^{3}\left(\partial_{x_{k}} a_{\chi, j}-\partial_{x_{j}} a_{\chi, k}\right)(t, q(t)) \dot{q}_{j}(t)\right) \cdot h_{k}(t)+ \\
& \quad+\int_{0}^{T} \mathrm{~d} t \int_{\mathbb{R}^{3}} \mathrm{~d} x(-\varphi(t, x) \chi(x-q(t))+\chi(x-q(t)) \dot{q}(t) \cdot a(t, x)) \cdot h(t)+ \\
& \quad+\int_{0}^{T} \mathrm{~d} t \int_{\mathbb{R}^{3}} \mathrm{~d} x\left(\left(-\partial_{t}^{2} A(t, x)-\nabla_{x} \partial_{t} \phi(t, x)-\nabla_{x} \times \nabla_{x} \times A(t, x)\right) \cdot a(t, x)+\right. \\
& \left.\quad+\nabla_{x} \cdot\left(-\partial_{t} A(t, x)-\nabla_{x} \phi(t, x)\right) \varphi(t, x)\right)
\end{aligned}
$$

In the step marked with $*$ we have plugged in the definition of $a_{\chi}=\chi * a$ and $\varphi_{\chi}=\chi * \varphi$ as a convolution with the charge cloud χ. By plugging in the definition of ρ, j, \mathbf{E} and \mathbf{B}, we obtain
a more concise expression:

$$
\begin{aligned}
& \begin{aligned}
\ldots \stackrel{[3]}{=}- & \int_{0}^{T} \mathrm{~d} t\left(m \ddot{q}(t)-\mathbf{E}_{\chi}(t, q(t))-\dot{q}(t) \times \mathbf{B}_{\chi}(t, q(t))\right) \cdot h(t)+ \\
& +\int_{0}^{T} \mathrm{~d} t \int_{\mathbb{R}^{3}} \mathrm{~d} x(\\
\quad & \left(\partial_{t} E(t, x)-\nabla_{x} \times \mathbf{B}(t, x)+j(t, x)\right) \cdot a(t, x)+ \\
& \left.\quad+\left(\nabla_{x} \cdot \mathbf{E}(t, x)-\rho(t, x)\right) \varphi(t, x)\right)
\end{aligned} \\
& \quad \stackrel{!}{=} 0
\end{aligned}
$$

That means we obtain the following coupled Euler-Lagrange equations:

$$
\begin{aligned}
m \ddot{q}(t) & \stackrel{[1]}{=} \mathbf{E}_{\chi}(t, q(t))+\dot{q}(t) \times \mathbf{B}_{\chi}(t, q(t)) \\
\partial_{t} \mathbf{E} & \stackrel{[1]}{=} \nabla_{x} \times \mathbf{B}-j \\
\nabla_{x} \cdot \mathbf{E} & \stackrel{[1]}{=} \rho
\end{aligned}
$$

(iv) Clearly, the magnetic field $\nabla_{x} \cdot \mathbf{B}=\nabla_{x} \cdot\left(\nabla_{x} \times A\right)=0$ [1] is divergence-free by definition. The equation of motion for \mathbf{B} can be derived just like in Chapter 10.1.4.2:

$$
\begin{aligned}
\partial_{t} \mathbf{B} & \stackrel{[1]}{=} \nabla_{x} \times \partial_{t} A=-\nabla_{x} \times\left(-\partial_{t} A-\nabla_{x} \phi\right) \\
& \stackrel{[1]}{=}-\nabla_{x} \times \mathbf{E}
\end{aligned}
$$

64. Extrema under constraints

Consider the Schrödinger operator $H=-\Delta_{x}+V$ on \mathbb{R}^{d} and assume $\sigma_{\mathrm{p}}(H) \neq \emptyset$.
Find the extremal points of the energy functional

$$
\mathcal{E}(\psi)=\int_{\mathbb{R}^{d}} \mathrm{~d} x\left(\left|\nabla_{x} \psi(x)\right|^{2}+V(x)|\psi(x)|^{2}\right)
$$

under the constraint

$$
\mathcal{J}(\psi)=\int_{\mathbb{R}^{d}} \mathrm{~d} x|\psi(x)|^{2}-1=0
$$

Solution:

We start by computing the Gâteaux derivative of the energy functional,

$$
\begin{aligned}
(\mathrm{d} \mathcal{E}(\psi)) \varphi & =\left.\int_{\mathbb{R}^{d}} \mathrm{~d} x \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\left|\nabla_{x} \psi(x)+s \nabla_{x} \varphi(x)\right|^{2}+V(x)|\psi(x)+s \varphi(x)|^{2}\right)\right|_{s=0} \\
& =\int_{\mathbb{R}^{d}} \mathrm{~d} x\left(\left(\overline{\nabla_{x} \varphi(x)} \cdot \nabla_{x} \psi(x)+\overline{\nabla_{x} \psi(x)} \cdot \nabla_{x} \varphi(x)\right)+V(x)(\overline{\varphi(x)} \psi(x)+\overline{\psi(x)} \varphi(x))\right) \\
& =2 \operatorname{Re} \int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{\varphi(x)}\left(-\Delta_{x} \psi(x)+V(x) \psi(x)\right),
\end{aligned}
$$

and the derivative of the constraint,

$$
\begin{aligned}
(\mathrm{d} \mathcal{J}(\psi)) \varphi & =\frac{\mathrm{d}}{\mathrm{~d} s} \int_{\mathbb{R}^{d}} \mathrm{~d} x|\psi(x)+s \varphi(x)|^{2}-\left.1\right|_{s=0} \\
& =\int_{\mathbb{R}^{d}} \mathrm{~d} x(\overline{\varphi(x)} \psi(x)+\overline{\psi(x)} \varphi(x)) \\
& =2 \operatorname{Re} \int_{\mathbb{R}^{d}} \mathrm{~d} x \overline{\varphi(x)} \psi(x)
\end{aligned}
$$

Applying the method of Lagrange multipliers, we obtain the equation

$$
\begin{aligned}
(\mathrm{d} \mathcal{E}(\psi)) \varphi+\lambda(\mathrm{d} \mathcal{J}(\psi)) \varphi & =2 \operatorname{Re} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}\left(-\Delta_{x} \psi(x)+V(x) \psi(x)+\lambda \psi(x)\right) \\
& =2 \operatorname{Re} \int_{\mathbb{R}^{3}} \mathrm{~d} x \overline{\varphi(x)}\left(-\Delta_{x}+V(x)+\lambda\right) \psi(x) \stackrel{!}{=} 0
\end{aligned}
$$

That means

$$
H \psi=-\lambda \psi
$$

and thus, any eigenvector ψ to E_{ψ} satisfies the equation for $\lambda=-E_{\psi}$. The minimizer is obviously the ground state.

