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Homework Problems

63. The Abraham model (21 points)

The Abraham model describes a particle with a rigid charged density x € C*°(R3,R), [ps dz x(z) =
1, coupled to an electromagnetic field. Here, rigid means that the charge distribution does not
change in time. Moreover, we define ¢, = x * ¢ and A, = x * A to be the smoothened potentials
obtained by convolving ¢ and the components of A with the charge density .

The Lagrange function of this system is

L(q(t),4(t), A(t), 6(1), A(t), 6(t)) := Ly (a(t), d(t), A1), &()) + Lem (A(t), (1), A(1), $(¢))

which is comprised of the particle Lagrangian
Lp(wv v, Aa ¢) = %UQ - ¢X($) +v- AX(:U)

and the field Lagrangian
Coy 1 2 2
Len(4,6,4,0) = 5 | do (214t 2) = Vao(t,2))* = (Vo x A(t,2))°).

(i) Verify that p(t,z) = x(z — q(t)) and j(t,z) = x(z — q(t)) 4(¢) satisfy charge conservation.
(ii) Give the action functional associated to the Lagrange function L.
(iii) Derive the Euler-Lagrange equations.
(iv) Compute the equations of motion in terms of the electric field E and magnetic field B.
Hint: The equations of motion also involve E, = x * Eand B,, = x * B.

Note: Coupling the Maxwell and the Newton equations for a particle with point charge y = ¢ leads
to equations which are ill-defined, and it turns out to be necessary to smear out the charge over a
small region.

The interested reader may read the discussion in Chapter 2-2.4 of Herbert Spohn’s book “Dynamics
of Charged Particles”, Cambridge University Press, 2004.



Solution:
Unfortunately there was a sign mistake (—A - v rather than + A - v in L,).

(i) We compute the time derivative of the charge density,

o(lit (t,7) = (;it (¢ — q(t)) = ~Vax(z — q(t)) d(0),

and the divergence of the current density,

Vo it 2) B Vax(z — q(t)) 4(t),

and see that they are equal up to a sign, 9;p + V. - j = 0[1].

T
(ii) S(q.A4,¢) = /O dt (Ly(a(t), d(t), A1), (1)) + Lem(A(1), 6(2), A1), 6(1)) ) [2]

(iii) Let us compute the Euler-Lagrange equations from first principles:
(dS(g, A, 9))(h,a,p) =
b / dt — ( q(t) + sh(t),q(t) + s h(t), A(t) + s a(t), p(t) + Scp(t))—i—

e (A0) + 5(0),000) + 59(0), A1) + 50, 50) + 59(0)))

s=0

T
@/0 dt<<m(J(t)+AX(t,q(t))> h(t) — Vaoy (£ q(t)) - h(t)+

3
£ 450 Vaars (a() - h(t)—sox(t,q@))+q‘<t>'ax(t,q<t>))+

7j=1
T
+ /0 dt /R e ((~00A(t,2) — Vaglt,2)) - (~Oualt, ) ~ Vasp(t,2)+

(Vo x A(t,2)) - (Vo x a(t,)) )
Bl 23: /0 " (m Gk (t) + O Ay 1 (1, q(1)) + Dy by (L, () +
. gi;(azkax,j = 0n,00) (1.0(0) 500 ) - )+
d (—(t.0) X~ 0) + (& a(0) 40 -a.2)) - o)+
(( OFA(t,x) — Vodid(t,x) — Vi x Vi x A(t,2)) - a(t, z)+

V- (At ) — Vad(t, ) go(t,x))

In the step marked with * we have plugged in the definition of a, = x*aand ¢, = x xpasa
convolution with the charge cloud x. By plugging in the definition of p, j, E and B, we obtain



a more concise expression:
T
.- —/0 dt (m G(t) — Ey(t, q(t)) — 4(t) x Bx(t,q(t))) ~h(t)+
T
+/O dt /RS dx ((atE(t,x) — Vo x B(t,2) + j(t,z)) - a(t, z)+

+(Ve E(t ) = p(t,2) o(t, 7))
|
=0
That means we obtain the following coupled Euler-Lagrange equations:

m () L Ey (1 g(t)) + d(t) x By (t, (1))

8tEEVIXB—j

(iv) Clearly, the magnetic field V, -B = V. - (Vx X A) = 0 [1] is divergence-free by definition.
The equation of motion for B can be derived just like in Chapter 10.1.4.2:

OB UV, x A=V, x (~9A - V,0)

E—Vggxla



64. Extrema under constraints
Consider the Schrédinger operator H = —A, + V on R and assume o, (H) # 0.

Find the extremal points of the energy functional

ew) = [ 4o (|90@f + V@ @)P)
under the constraint

JW) = | da|p@)?—-1=0.

R4

Solution:

We start by computing the Giteaux derivative of the energy functional,

/ d:c— (IVav(@) + 5 Vapl@)]* + V(@) [i(@) + so(@) )

s=0

/ 4o ((Vop(@) - Vatb(w) + Vaila) - Varp() + V(@) (o) ¥(2) + 0(z) () )
=2Re | du () (~Ast(2) + V(@) ¥()),

R4

and the derivative of the constraint,

d
(@7@)e= g, [ dr v+l -1

- /Rd dz (p(z) (2) + ¥ (z) p(z))

= 2Re dz o(z) ().

R4

Applying the method of Lagrange multipliers, we obtain the equation

(d€())p + A (4T (1)) = 2Re / 4z (@) (—Aath(z) + V() $(x) + Mp(a))
— 9Re /R dr p(2) (— Ay + V() + \)ib(x) = 0.
That means

Hw = _A¢7

and thus, any eigenvector v to Ey, satisfies the equation for A\ = —E,.

The minimizer is obviously the ground state.



