Functionals

Homework Problems

63. The Hessian of an action functional (10 points)

Consider the action functional

$$
S(q):=\int_{0}^{T} \mathrm{~d} t L(q(t), \dot{q}(t))
$$

associated to the Lagrange function $L \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ on

$$
\mathcal{D}\left(x_{0}, x_{1}\right):=\left\{q \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{d}\right) \mid q(0)=x_{0}, q(T)=x_{1}\right\}
$$

(i) Argue why it suffices to consider tangent vectors of the form $h \in \mathcal{D}(0,0)$.
(ii) Consider for simplicity the case $d=1$. Compute the Hessian

$$
\left\langle h,\left(\mathrm{~d}^{2} \mathcal{E}(q)\right) k\right\rangle=\left.\frac{\partial^{2}}{\partial s \partial r} S(q+s h+r k)\right|_{s=0=r}
$$

in terms of L where $h, k \in \mathcal{D}(0,0)$. Find an expression which is independent of \dot{h}.

Solution:

(i) First of all, for any $q \in \mathcal{D}\left(x_{0}, x_{1}\right)$ and $h \in \mathcal{D}(0,0)$ the trajectory $q_{s}:=q+s h$ is an element of $\mathcal{D}\left(x_{0}, x_{1}\right)[1]:$ evidently, $q_{s} \in \mathcal{C}^{2}\left([0, T], \mathbb{R}^{d}\right)$ [1] and $q_{s}(0)=x_{0}$ as well as $q_{s}(T)=x_{1}[1]$. Thus, $\left.\partial_{s} q_{s}(t)\right|_{s=0}=h(t) \in \mathbb{R}^{d}$ is a tangent vector at $q(t)$ [1]. Any tangent vector can be written in this fashion, because any tangent vector can be seen as an element of $\mathbb{R}^{d}[1]$.
(ii)

$$
\begin{aligned}
&\left.\left\langle h,\left(\mathrm{~d}^{2} \mathcal{E}(q)\right) k\right\rangle \stackrel{[1]}{=} \int_{0}^{T} \mathrm{~d} t \frac{\partial^{2}}{\partial s \partial r} L(q(t)+s h(t)+r k(t), \dot{q}(t)+s \dot{h}(t)+r \dot{k}(t))\right|_{s=0=r} \\
& \stackrel{[1]}{=} \int_{0}^{T} \mathrm{~d} t \frac{\partial}{\partial r}\left(\partial_{x} L(q(t)+r k(t), \dot{q}(t)+r \dot{k}(t)) h(t)+\right. \\
&\left.\quad+\partial_{v} L(q(t)+r k(t), \dot{q}(t)+r \dot{k}(t)) \dot{h}(t)\right)\left.\right|_{r=0} \\
& \stackrel{[1]}{=} \int_{0}^{T} \mathrm{~d} t \frac{\partial}{\partial r}\left(\partial_{x} L(q(t)+r k(t), \dot{q}(t)+r \dot{k}(t))+\right. \\
&\left.\quad-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{v} L(q(t)+r k(t), \dot{q}(t)+r \dot{k}(t))\right)\left.h(t)\right|_{r=0} \\
& \stackrel{[2]}{=} \int_{0}^{T} \mathrm{~d} t\left(k(t)\left(\partial_{x}^{2} L(q(t), \dot{q}(t))-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{x} \partial_{v} L(q(t), \dot{q}(t))\right)+\right. \\
&\left.+\dot{k}(t)\left(\partial_{v} \partial_{x} L(q(t), \dot{q}(t))-\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{v}^{2} L(q(t), \dot{q}(t))\right)\right) h(t)
\end{aligned}
$$

64. Taylor expansion of functionals (11 points)

Suppose \mathcal{E} is twice Gâteaux differentiable on Ω where Ω is an convex subset of a Banach space \mathcal{X}.
(i) Show that \mathcal{E} has a Taylor expansion to first order, i. e. for all $x, y \in \Omega$ there exists $\theta \in[0,1]$ such that $\mathcal{E}(x+y)=\mathcal{E}(x)+(\mathrm{d} \mathcal{E}(x))(y)+\left\langle y,\left(\mathrm{~d}^{2} \mathcal{E}(x+\theta y)\right) y\right\rangle$.
(ii) Show that the remainder $R(x, y)=\mathcal{E}(x+y)-\mathcal{E}(x)-(\mathrm{d} \mathcal{E}(x))(y)$ is $o(\|y\|)$.

Solution:

(i) We define $f(s):=\mathcal{E}(x+s y)$ [1]. Evidently, $f \in \mathcal{C}^{2}$ because \mathcal{E} is twice Gâteaux differentiable. Hence, we may Taylor-expand the scalar function $f[1]$,

$$
\begin{aligned}
\mathcal{E}(x+s y) & =f(s) \stackrel{[1]}{=} f(0)+f^{\prime}(0) s+\frac{1}{2} f^{\prime \prime}(\theta) s^{2} \\
& \stackrel{[2]}{=} \mathcal{E}(x)+s(\mathrm{~d} \mathcal{E}(x)) y+s^{2} \frac{1}{2}\left\langle y,\left(\mathrm{~d}^{2} \mathcal{E}(x+\theta y)\right) y\right\rangle
\end{aligned}
$$

Here, we have used that the remainder of a Taylor series can be expressed as

$$
\frac{f^{(k+1)}(\theta)}{(k+1)!} s^{k+1}
$$

where $\theta \in[0,1]$ depends on s, and in our case $k=1$ [1]. Plugging in $s=1$ yields the claim [1].
(ii) This follows just like in the case of the Taylor expansion on \mathbb{R} : the continuity of $f^{\prime \prime}$ and $\theta \in$ $[0,1]$ imply

$$
r(s) \stackrel{[1]}{=} f(s)-f(0)-s f^{\prime}(0) \stackrel{[1]}{=} \mathcal{E}(x+s y)-\mathcal{E}(x)-(\mathrm{d} \mathcal{E}(x))(s y) \stackrel{[1]}{=} o(s)
$$

and consequently $R(x, y)=o(\|y\|)[1]$.

65. Hopf bifurcation (11 points)

Consider the following system of ODEs

$$
\begin{aligned}
& \dot{r}=f(\mu, r):=r\left(\mu-r^{2}\right) \\
& \dot{\theta}=-1
\end{aligned}
$$

in two dimensions which are expressed in polar coordinates ($r \geq 0$ being the radius and θ the angle variable). $\mu \in \mathbb{R}$ is the external parameter. We focus on the equation for \dot{r}.
(i) Find the fixed points of the vector field for \dot{r}. Discuss all cases for the various values of μ.
(ii) Discuss the stability of the fixed points depending on the values of μ. Sketch a phase portrait for each of the cases.
(iii) Identify the bifurcation point $\left(\mu_{\mathrm{bi}}, r_{\mathrm{bi}}\right)$. Verify that at the bifurcation point $\partial_{r} f\left(\mu_{\mathrm{bi}}, r_{\mathrm{bi}}\right)=0$.

Solution:

(i) We have to distinguish the cases $\mu \leq 0$ and $\mu>0$.
$\mu \leq 0$: Only $r_{c}=0$ is a fixed point [1].
$\mu>0: r_{c}=0$ [1] and $r_{c}=\sqrt{\mu}$ [1] are the fixed points.
(ii) $\mu \leq 0$: Given that for $r>0$ we have $\dot{r}<0$, the fixed point is a stable focus point [1].
$\mu>0$: We have to distinguish the cases $r<\sqrt{\mu}$ where $\dot{r}>0$ and $r>\sqrt{\mu}$ where $\dot{r}<0$ [1]. In both cases $r(t) \rightarrow \sqrt{\mu}$ either from the inside $(r<\sqrt{\mu})$ [1] or from the outside $(r>\sqrt{\mu})$ [1]. Thus, $r_{c}=0$ is an unstable fixed point [1] while $r_{c}=\sqrt{\mu}$ is a stable fixed point [1].
(iii) The bifurcation point is $(0,0)$ [1]. There, the derivative of f with respect to r vanishes,

$$
\partial_{r} f(0,0)=\left.\partial_{r}\left(-r^{3}\right)\right|_{r=0}=-\left.3 r^{2}\right|_{r=0} \stackrel{[1]}{=} 0
$$

