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Functionals

Homework Problems

63. The Hessian of an action functional (10 points)

T
- /0 dt L(g(t), d(t))

associated to the Lagrange function L € C?(R% x R%) on

D(xzp,x1) := {q e C'([0,7],RY) | ¢(0) = o, q(T) = ;171}.

Consider the action functional

(i) Argue why it suffices to consider tangent vectors of the form h € D(0,0).

(ii) Consider for simplicity the case d = 1. Compute the Hessian

(h, (d*¢(q))k) = 888;5 (¢ + sh +rk)

s=0=r

in terms of L where h, k € D(0,0). Find an expression which is independent of /.

Solution:

(i) Firstof all, for any q € D(zg,x1) and h € D(0, 0) the trajectory gs := g + s h is an element of
D(wo, 1) [1]: evidently, g, € C*([0,T],R?) [1] and ¢5(0) = z as well as g5(T) = 21 [1]. Thus,
0sqs(t)|s=0 = h(t) € R?is a tangent vector at ¢(¢) [1]. Any tangent vector can be written in

this fashion, because any tangent vector can be seen as an element of R? [1].

(if)
(h, (€ (q))k) & a (alt) + sht) + 7 k@), d(t) + sh(t) + 7 k(D)) o
i) / dr 5’ L(q(t) +rk(t), d(t) + 7 k(1)) h(t)+
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64. Taylor expansion of functionals (11 points)
Suppose & is twice Gateaux differentiable on 2 where ) is an convex subset of a Banach space X'.

(i) Show that & has a Taylor expansion to first order, i. e. for all z,y € 2 there exists 6 € [0, 1]
such that £(z + y) = £(z) + (d€(2)) (y) + <y, (dQE(:c + 9y))y>.

(ii) Show that the remainder R(z,y) = £(z +y) — E(z) — (d€(x)) (y) is o([|y])).

Solution:

(i) We define f(s) := £(x + sy) [1]. Evidently, f € C? because € is twice Gateaux differentiable.
Hence, we may Taylor-expand the scalar function f [1],

E(z+sy) = f(5) 2 F(0) + £/(0) s + L£7(6) 52

D () + 5 (dE(0))y + 5* 1y, (E(x +09))y).

Here, we have used that the remainder of a Taylor series can be expressed as
FEDO) i
—— S
(k+1)!

where 6 € [0, 1] depends on s, and in our case k = 1[1]. Plugging in s = 1 yields the claim [1].
(ii) This follows just like in the case of the Taylor expansion on R: the continuity of f” and 6 €
[0, 1] imply

r(s) 2 f(s) = F(0) =5 '(0) L £(x + sy) — E@) — (dE()) (s) Z o(s),

and consequently R(z,y) = o(||ly]]) [1].



65. Hopf bifurcation (11 points)
Consider the following system of ODEs

in two dimensions which are expressed in polar coordinates (r > 0 being the radius and 6 the angle
variable). ;1 € R is the external parameter. We focus on the equation for 7.

(i) Find the fixed points of the vector field for 7. Discuss all cases for the various values of .

(ii) Discuss the stability of the fixed points depending on the values of p. Sketch a phase portrait
for each of the cases.

(iii) Identify the bifurcation point (uu;, 11,;). Verify that at the bifurcation point 9, f (pu;, 7i) = 0.

Solution:

(i) We have to distinguish the cases ;n < 0 and p > 0.
w < 0: Only r. = 0 is a fixed point [1].
p > 0:r. = 0[1]and r. = |/ [1] are the fixed points.
(ii) p < 0: Given that for r > 0 we have 7 < 0, the fixed point is a stable focus point [1].

p > 0: We have to distinguish the cases r < \/u where 7 > 0 and r > /i where 7 < 0[1]. In
both cases r(t) — /i either from the inside (r < /1) [1] or from the outside (r > /p) [1].
Thus, r. = 0 is an unstable fixed point [1] while r. = /1t is a stable fixed point [1].

(iii) The bifurcation point is (0, 0) [1]. There, the derivative of f with respect to r vanishes,

0. £(0,0) = 0. (—r%)|_, = -3r% _, Zo.

r=0



