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Functionals

Homework Problems
63. The Hessian of an action functional (10 points)

Consider the action functional

S(q) :=

∫ T

0
dt L

(
q(t), q̇(t)

)
associated to the Lagrange function L ∈ C2(Rd × Rd) on

D(x0, x1) :=
{
q ∈ C1

(
[0, T ],Rd

) ∣∣ q(0) = x0, q(T ) = x1

}
.

(i) Argue why it suffices to consider tangent vectors of the form h ∈ D(0, 0).
(ii) Consider for simplicity the case d = 1. Compute the Hessian⟨

h,
(
d2E(q)

)
k
⟩
=

∂2

∂s ∂r
S
(
q + sh+ rk

)∣∣∣∣
s=0=r

in terms of L where h, k ∈ D(0, 0). Find an expression which is independent of ḣ.

Solution:
(i) First of all, for any q ∈ D(x0, x1) and h ∈ D(0, 0) the trajectory qs := q + s h is an element of

D(x0, x1) [1]: evidently, qs ∈ C2
(
[0, T ],Rd

)
[1] and qs(0) = x0 as well as qs(T ) = x1 [1]. Thus,

∂sqs(t)|s=0 = h(t) ∈ Rd is a tangent vector at q(t) [1]. Any tangent vector can be written in
this fashion, because any tangent vector can be seen as an element of Rd [1].

(ii) ⟨
h,

(
d2E(q)

)
k
⟩ [1]
=

∫ T

0
dt ∂2

∂s ∂r
L
(
q(t) + s h(t) + r k(t) , q̇(t) + s ḣ(t) + r k̇(t)

)∣∣∣∣
s=0=r

[1]
=

∫ T

0
dt ∂

∂r

(
∂xL

(
q(t) + r k(t) , q̇(t) + r k̇(t)

)
h(t)+

+ ∂vL
(
q(t) + r k(t) , q̇(t) + r k̇(t)

)
ḣ(t)

)∣∣∣
r=0

[1]
=

∫ T

0
dt ∂

∂r

(
∂xL

(
q(t) + r k(t) , q̇(t) + r k̇(t)

)
+

− d
dt∂vL

(
q(t) + r k(t) , q̇(t) + r k̇(t)

))
h(t)

∣∣∣∣
r=0

[2]
=

∫ T

0
dt

(
k(t)

(
∂2
xL

(
q(t), q̇(t)

)
− d

dt∂x ∂vL
(
q(t), q̇(t)

))
+

+ k̇(t)

(
∂v ∂xL

(
q(t), q̇(t)

)
− d

dt∂
2
vL

(
q(t), q̇(t)

)))
h(t)
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64. Taylor expansion of functionals (11 points)
Suppose E is twice Gâteaux differentiable on Ω where Ω is an convex subset of a Banach space X .
(i) Show that E has a Taylor expansion to first order, i. e. for all x, y ∈ Ω there exists θ ∈ [0, 1]

such that E(x+ y) = E(x) +
(
dE(x)

)
(y) +

⟨
y,
(
d2E(x+ θ y)

)
y
⟩
.

(ii) Show that the remainder R(x, y) = E(x+ y)− E(x)−
(
dE(x)

)
(y) is o(∥y∥).

Solution:

(i) We define f(s) := E(x+ sy) [1]. Evidently, f ∈ C2 because E is twice Gâteaux differentiable.
Hence, we may Taylor-expand the scalar function f [1],

E(x+ sy) = f(s)
[1]
= f(0) + f ′(0) s+ 1

2f
′′(θ) s2

[2]
= E(x) + s

(
dE(x)

)
y + s2 1

2

⟨
y,
(
d2E(x+ θ y)

)
y
⟩
.

Here, we have used that the remainder of a Taylor series can be expressed as

f (k+1)(θ)

(k + 1)!
sk+1

where θ ∈ [0, 1] depends on s, and in our case k = 1 [1]. Plugging in s = 1 yields the claim [1].
(ii) This follows just like in the case of the Taylor expansion on R: the continuity of f ′′ and θ ∈

[0, 1] imply

r(s)
[1]
= f(s)− f(0)− s f ′(0)

[1]
= E(x+ sy)− E(x)−

(
dE(x)

)
(sy)

[1]
= o(s),

and consequently R(x, y) = o(∥y∥) [1].
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65. Hopf bifurcation (11 points)
Consider the following system of ODEs

ṙ = f(µ, r) := r
(
µ− r2

)
θ̇ = −1

in two dimensions which are expressed in polar coordinates (r ≥ 0 being the radius and θ the angle
variable). µ ∈ R is the external parameter. We focus on the equation for ṙ.
(i) Find the fixed points of the vector field for ṙ. Discuss all cases for the various values of µ.
(ii) Discuss the stability of the fixed points depending on the values of µ. Sketch a phase portrait

for each of the cases.
(iii) Identify the bifurcation point (µbi, rbi). Verify that at the bifurcation point ∂rf(µbi, rbi) = 0.

Solution:

(i) We have to distinguish the cases µ ≤ 0 and µ > 0.
µ ≤ 0: Only rc = 0 is a fixed point [1].
µ > 0: rc = 0 [1] and rc =

√
µ [1] are the fixed points.

(ii) µ ≤ 0: Given that for r > 0 we have ṙ < 0, the fixed point is a stable focus point [1].
µ > 0: We have to distinguish the cases r <

√
µ where ṙ > 0 and r >

√
µ where ṙ < 0 [1]. In

both cases r(t) → √
µ either from the inside (r <

√
µ) [1] or from the outside (r >

√
µ) [1].

Thus, rc = 0 is an unstable fixed point [1] while rc =
√
µ is a stable fixed point [1].

(iii) The bifurcation point is (0, 0) [1]. There, the derivative of f with respect to r vanishes,

∂rf(0, 0) = ∂r
(
−r3

)∣∣
r=0

= −3r2
∣∣
r=0

[1]
= 0.
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