Differential Equations of
 Mathematical Physics

(APM 351 Y)

Functionals

This homework sheet is purely for extra credit.

Homework Problems

63. The Hessian of an action functional

Consider the action functional

$$
S(q):=\int_{0}^{T} \mathrm{~d} t L(q(t), \dot{q}(t))
$$

associated to the Lagrange function $L \in \mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ on

$$
\mathcal{D}\left(x_{0}, x_{1}\right):=\left\{q \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{d}\right) \mid q(0)=x_{0}, q(T)=x_{1}\right\} .
$$

(i) Argue why it suffices to consider tangent vectors of the form $h \in \mathcal{D}(0,0)$.
(ii) Consider for simplicity the case $d=1$. Compute the Hessian

$$
\left\langle h,\left(\mathrm{~d}^{2} \mathcal{E}(q)\right) k\right\rangle=\left.\frac{\partial^{2}}{\partial s \partial r} S(q+s h+r k)\right|_{s=0=r}
$$

in terms of L where $h, k \in \mathcal{D}(0,0)$. Find an expression which is independent of \dot{h}.
64. Taylor expansion of functionals

Suppose \mathcal{E} is twice Gâteaux differentiable on Ω where Ω is an convex subset of a Banach space \mathcal{X}.
(i) Show that \mathcal{E} has a Taylor expansion to first order, i. e. for all $x, y \in \Omega$ there exists $\theta \in[0,1]$ such that $\mathcal{E}(x+y)=\mathcal{E}(x)+(\mathrm{d} \mathcal{E}(x))(y)+\left\langle y,\left(\mathrm{~d}^{2} \mathcal{E}(x+\theta y)\right) y\right\rangle$.
(ii) Show that the remainder $R(x, y)=\mathcal{E}(x+y)-\mathcal{E}(x)-(\mathrm{d} \mathcal{E}(x))(y)$ is $o(\|y\|)$.

65. Hopf bifurcation

Consider the following system of ODEs

$$
\begin{aligned}
& \dot{r}=f(\mu, r):=r\left(\mu-r^{2}\right) \\
& \dot{\theta}=-1
\end{aligned}
$$

in two dimensions which are expressed in polar coordinates ($r \geq 0$ being the radius and θ the angle variable). $\mu \in \mathbb{R}$ is the external parameter. We focus on the equation for \dot{r}.
(i) Find the fixed points of the vector field for \dot{r}. Discuss all cases for the various values of μ.
(ii) Discuss the stability of the fixed points depending on the values of μ. Sketch a phase portrait for each of the cases.
(iii) Identify the bifurcation point $\left(\mu_{\mathrm{bi}}, r_{\mathrm{bi}}\right)$. Verify that at the bifurcation point $\partial_{r} f\left(\mu_{\mathrm{bi}}, r_{\mathrm{bi}}\right)=0$.

Hand in home work on: Thursday, 3 April 2014, before class

