

Only to be filled out by the instructor/TA:
Left room from \qquad to \qquad

Handed in early at \qquad
Remarks:
Solution

1. The heat equation (18 points)

Consider the heat equation

$$
\begin{equation*}
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x) \tag{1}
\end{equation*}
$$

on the interval $[0, L]$ with Neumann boundary conditions

$$
\partial_{x} u(t, 0)=0=\partial_{x} u(t, L) .
$$

(i) Derive the solution using separation of variables.
(ii) Compute $\lim _{t \rightarrow \infty} u(t, x)$ for any solution of (1), assuming you can interchange limit and sum.
(iii) Give a necessary condition on the coefficients which allows you to interchange limit and sum in (ii). Justify your answer.
(iv) Solve (1) for the initial condition $u(0, x)=\left(\cos \frac{\pi}{L} x\right)^{2}$.

Solution:

(i) We write $u(t, x)=\tau(t) \xi(x)$ [1] and plug that ansatz into (1),

$$
\begin{align*}
\dot{\tau}(t) \xi(x) & =\tau(t) \xi^{\prime \prime}(x), \\
\Rightarrow \frac{\dot{\tau}}{\tau} & =\frac{\xi^{\prime \prime}}{\xi}=\lambda \in \mathbb{C} . \tag{1}
\end{align*}
$$

To determine the allowed values of $\lambda \in \mathbb{C}$, we solve the equation for ξ and plug in the Neumann boundary conditions: the above equation yields a harmonic oscillator equation for ξ,

$$
\begin{equation*}
\xi^{\prime \prime}-\lambda \xi=0 \tag{1}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
\xi(x)=a_{1} \mathrm{e}^{+x \sqrt{\lambda}}+a_{2} \mathrm{e}^{-x \sqrt{\lambda}} . \tag{1}
\end{equation*}
$$

The derivative needs to satisfy the boundary condition:

$$
\begin{align*}
\xi^{\prime}(x) & =\sqrt{\lambda} a_{1} \mathrm{e}^{+x \sqrt{\lambda}}-\sqrt{\lambda} a_{2} \mathrm{e}^{-x \sqrt{\lambda}} \\
\xi^{\prime}(0) & =\sqrt{\lambda}\left(a_{1}-a_{2}\right) \stackrel{!}{=} 0 \Rightarrow a_{1}=a_{2} \tag{1}\\
\xi^{\prime}(L) & =\sqrt{\lambda} a_{1}\left(\mathrm{e}^{+L \sqrt{\lambda}}-\mathrm{e}^{-L \sqrt{\lambda}}\right) \stackrel{!}{=} 0 \tag{1}
\end{align*}
$$

The latter condition is equivalent to $\mathrm{e}^{2 L \sqrt{\lambda}}=1$ and implies

$$
\begin{equation*}
2 L \sqrt{\lambda}=\mathrm{i} 2 \pi n, \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Hence only

$$
\lambda=-\frac{\pi^{2}}{L^{2}} n^{2}
$$

are allowed for some integer $n=0,1, \ldots$, and the solutions are of the form

$$
\begin{equation*}
\xi_{n}(x)=\frac{1}{2} a(n)\left(\mathrm{e}^{+\mathrm{i} n \frac{\pi}{L} x}+\mathrm{e}^{-\mathrm{i} n \frac{\pi}{L} x}\right)=a(n) \cos n \frac{\pi}{L} x . \tag{1}
\end{equation*}
$$

Thus, the associated solutions $\tau_{n}(t)=\mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t}$ solve

$$
\begin{equation*}
\dot{\tau}_{n}(t)=-n^{2} \frac{\pi^{2}}{L^{2}} \tau_{n}(t), \quad \tau_{n}(0)=1 \tag{1}
\end{equation*}
$$

and any solution to $(\underline{1})$ is of the form

$$
\begin{equation*}
u(t, x)=\sum_{n=0}^{\infty} a(n) \mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t} \cos n \frac{\pi}{L} x \tag{1}
\end{equation*}
$$

(ii) If we can interchange $\lim _{t \rightarrow \infty}$ and the sum over n, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(t, x) & \stackrel{[1]}{=} \lim _{t \rightarrow \infty} \sum_{n=0}^{\infty} a(n) \mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t} \cos n \frac{\pi}{L} x \\
& \stackrel{[1]}{=} \sum_{n=0}^{\infty} \lim _{t \rightarrow \infty}\left(a(n) \mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t} \cos n \frac{\pi}{L} x\right) \\
& \stackrel{[1]}{=} a(0)
\end{aligned}
$$

(iii) A sufficient condition to allow the interchange of limit and sum is the absolute summability of the coefficients $a(n)$,

$$
\begin{equation*}
\sum_{n=0}^{\infty}|a(n)|<\infty \tag{1}
\end{equation*}
$$

Because then each of the coefficients satisfies $\mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t}|a(n)| \leq|a(n)|$, solution exists pointwise for any t and x,

$$
\begin{align*}
\|u(t, x)\| & \leq \sum_{n=0}^{\infty} \mathrm{e}^{-n^{2} \frac{\pi^{2}}{L^{2}} t}|a(n)|\left|\cos n \frac{\pi}{L} x\right| \\
& \leq \sum_{n=0}^{\infty}|a(n)|<\infty \tag{1}
\end{align*}
$$

and thus, by dominated convergence for sums, we may interchange limits and sums [1].
(iv) The square of the cos can be written as a double-angle cos,

$$
\begin{equation*}
\left(\cos \frac{\pi}{L} x\right)^{2}=\frac{1}{2}\left(1+\cos 2 \frac{\pi}{L} x\right) \tag{1}
\end{equation*}
$$

This means only two coefficents are non-zero, and we obtain as solution

$$
\begin{equation*}
u(t, x)=\frac{1}{2}\left(1+\mathrm{e}^{-4 \frac{\pi^{2}}{L^{2}} t} \cos 2 \frac{\pi}{L} x\right) \tag{1}
\end{equation*}
$$

2. Classical mechanics (24 points)

Consider Hamilton's equations of motion

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{q}{p}=X_{H}:=\binom{+\partial_{p} H}{-\partial_{q} H} \tag{2}
\end{equation*}
$$

on \mathbb{R}^{2} associated to the Hamilton function

$$
H(p, q)=\sqrt{m^{2}+p^{2}}+V(q)
$$

(i) Assume $V \in \mathcal{C}^{2}(\mathbb{R})$. Find the fixed points of the Hamiltonian vector field X_{H} and characterize the stability of each fixed point in terms of V (stable or unstable, elliptic or hyperbolic).
(ii) Show that for $V(q)=q-2 \log \left(1+q^{2}\right)$ the Hamiltonian flow Φ exists for all $t \in \mathbb{R}$.
(iii) For this potential $V(q)=q-2 \log \left(1+q^{2}\right)$, find all fixed points and characterize their stability (stable or unstable, elliptic or hyperbolic).

Solution:

(i) Fixed points satisfy the condition

$$
\begin{equation*}
X_{H}\left(q_{c}, p_{c}\right)=\binom{\frac{p}{\sqrt{m^{2}+p^{2}}}}{-V^{\prime}(q)} \stackrel{!}{=} 0 \tag{1}
\end{equation*}
$$

and thus, $p_{c}=0$ and $V^{\prime}\left(q_{c}\right)=0$ [1].
If we evaluate the differential of the vector field

$$
D X_{H}(q, p) \stackrel{[1]}{=}\left(\begin{array}{cc}
0 & m^{2}\left(m^{2}+p^{2}\right)^{-3 / 2} \\
-V^{\prime \prime}(q) & 0
\end{array}\right)
$$

at a critical point $\left(q_{c}, 0\right)$ and compute the eigenvalues [1], we arrive at

$$
\operatorname{det}\left(\lambda \mathrm{id}-D X_{H}\left(q_{c}, 0\right)\right)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -m^{-1} \\
+V^{\prime \prime}(q) & \lambda
\end{array}\right) \stackrel{[1]}{=} \lambda^{2}+m^{-1} V^{\prime \prime}\left(q_{c}\right)
$$

If $V^{\prime \prime}\left(q_{c}\right)>0$, then the two eigenvalues are purely imaginary [1], and thus, the fixed point $\left(q_{c}, 0\right)$ is stable and elliptic [1].
If $V^{\prime \prime}\left(q_{c}\right)<0$, then the two eigenvalues are real, one positive, one negative [1], and thus, the fixed point $\left(q_{c}, 0\right)$ is unstable and hyperbolic [1].
(ii) We have to check whether the Hamiltonian vector field

$$
X_{H}(q, p)=\binom{+\partial_{p} H(q, p)}{-\partial_{q} H(q, p)} \stackrel{[1]}{=}\binom{\frac{p}{\sqrt{m^{2}+p^{2}}}}{-V^{\prime}(q)}
$$

is Lipschitz on all of \mathbb{R}^{2} [1]. We can treat both entries separately, because the first component only depends on p and the second depends only on q. The second derivative of the kinetic energy is bounded,

$$
\begin{aligned}
\partial_{p}^{2}\left(\sqrt{m^{2}+p^{2}}\right) & =\partial_{p}\left(\frac{p}{\sqrt{m^{2}+p^{2}}}\right) \stackrel{[1]}{=}\left(m^{2}+p^{2}\right)^{-1 / 2}+p\left(-\frac{1}{2}\right) 2 p\left(m^{2}+p^{2}\right)^{-3 / 2} \\
& =\left(m^{2}+p^{2}\right)^{-3 / 2}\left(m^{2}+p^{2}-p^{2}\right) \stackrel{[1]}{=} m^{2}\left(m^{2}+p^{2}\right)^{-3 / 2}
\end{aligned}
$$

and thus, $\partial_{q}\left(\sqrt{m^{2}+p^{2}}\right)$ is Lipschitz [1]. Moreover, we have to check whether V^{\prime} is Lipschitz, and a sufficient condition for V^{\prime} to be Lipschitz is the boundedness of $V^{\prime \prime}$: the power of the numerator is smaller than the power of the strictly positive denominator [1],

$$
\begin{aligned}
\partial_{q}^{2}\left(q-2 \log \left(1+q^{2}\right)\right) & =\partial_{q}\left(1-\frac{4 q}{1+q^{2}}\right)=-\frac{4}{1+q^{2}}+\frac{8 q^{2}}{\left(1+q^{2}\right)^{2}} \\
& =\frac{8 q^{2}-4\left(1+q^{2}\right)}{\left(1+q^{2}\right)^{2}} \stackrel{[1]}{=} \frac{4 q^{2}-4}{\left(1+q^{2}\right)^{2}}
\end{aligned}
$$

and hence, V^{\prime} is Lipschitz.
Thus, the Hamiltonian vector field X_{H} is Lipschitz for all of $(q, p) \in \mathbb{R}^{2}$ [1], and by the PicardLindelöf theorem, the Hamiltonian flow exists for all $t \in \mathbb{R}$ [1].
(iii) Fixed points need to satisfy

$$
X_{H}(q, p)=\binom{\frac{p}{\sqrt{m^{2}+p^{2}}}}{-1+\frac{4 q}{1+q^{2}}}=0
$$

and we deduce $p=0$ and q needs to be a critical point of $q-2 \log \left(1+q^{2}\right)$:

$$
\begin{equation*}
-1+\frac{4 q}{1+q^{2}} \stackrel{!}{=} 0 \Longleftrightarrow 1+q^{2}-4 q=q^{2}-4 q+1 \stackrel{!}{=} 0 \tag{1}
\end{equation*}
$$

The zeros of this quadratic polynomial are $q_{ \pm}=2 \pm \sqrt{3}$. Hence, the fixed points are $(2 \pm \sqrt{3}, 0)$ [1].
Since the denominator of the second derivative is always positive, we only need to concern ourselves with the sign of the numerator: $V^{\prime \prime}(2+\sqrt{3})$ is negative,

$$
\begin{equation*}
4\left(1-(2+\sqrt{3})^{2}\right)=4(1-4-4 \sqrt{3}-3)=-4(6+4 \sqrt{3})<0 \tag{1}
\end{equation*}
$$

while $V^{\prime \prime}(2-\sqrt{3})$ is positive, because $2-\sqrt{3}<1$, and thus

$$
\begin{equation*}
4 \underbrace{(1-\underbrace{(2-\sqrt{3})^{2}}_{<1})}_{>0}>0 \tag{1}
\end{equation*}
$$

This means, $(2+\sqrt{3}, 0)$ is a stable, elliptic fixed point [1] while $(2-\sqrt{3}, 0)$ is a unstable and hyperbolic [1].

3. The Schrödinger equation for spin (17 points)

For $b>0$ consider the Schrödinger equation

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi(t)=H \psi(t):=\left(\begin{array}{cc}
0 & -\mathrm{i} b \tag{3}\\
+\mathrm{i} b & 0
\end{array}\right) \psi(t), \quad \psi(0) \in \mathbb{C}^{2}
$$

on the Hilbert space \mathbb{C}^{2} with scalar product $\langle\psi, \varphi\rangle:=\sum_{j=1,2} \overline{\psi_{j}} \varphi_{j}$.
(i) Compute the flow Φ. (Hint: Compute the powers of H explicitly.)
(ii) Elaborate in what sense Φ_{t} exists.
(iii) Solve the initial value problem for $\psi(0)=(1,0)$.
(iv) Show that Φ_{t} is unitary.

Solution:

(i) First of all, the flow is given by $\Phi_{t}:=\mathrm{e}^{-\mathrm{i} t H}$ [1]. To compute the matrix exponential explicitly, we note that

$$
\begin{aligned}
& H^{0}=\mathrm{id}_{\mathbb{C}^{2}}, \\
& H^{1}=H \\
& H^{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} b \\
+\mathbf{i} b & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -\mathrm{i} b \\
+\mathbf{i} b & 0
\end{array}\right)=\left(\begin{array}{cc}
-b^{2} \mathrm{i}^{2} & 0 \\
0 & -b^{2} \mathrm{i}^{2}
\end{array}\right)=b^{2} \mathrm{id}_{\mathbb{C}^{2}},
\end{aligned}
$$

and hence, $H^{2 n}=b^{2 n} \operatorname{id}_{\mathbb{C}^{2}}$ and $H^{2 n+1}=H^{2 n} H=b^{2 n} H$ [1]. Thus, we can split the sum for the matrix exponential and compute it explicitly:

$$
\begin{aligned}
\mathrm{e}^{-\mathrm{i} t H} & \stackrel{[1]}{=} \sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n} \\
& \stackrel{[1]}{=} \sum_{n=0}^{\infty}\left(\frac{(-\mathrm{i} t)^{2 n}}{(2 n)!} H^{2 n}+\frac{(-\mathrm{i} t)^{2 n+1}}{(2 n+1)!} H^{2 n+1}\right) \\
& \stackrel{[1]}{=}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{(b t)^{2 n}}{(2 n)!}\right) \mathrm{id}_{\mathbb{C}^{2}}-\frac{\mathrm{i}}{b}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{(b t)^{2 n+1}}{(2 n+1)!}\right) H \\
& \stackrel{[1]}{=} \cos (b t) \mathrm{id}_{\mathbb{C}^{2}}-\frac{\mathrm{i}}{b} \sin (b t) H
\end{aligned}
$$

(ii) $\mathrm{e}^{-\mathrm{i} t H}$ can be seen as the the limit of partial sums $\sum_{n=0}^{N} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n}$ as $N \rightarrow \infty$ which converges in the operator norm $\mathcal{B}\left(\mathbb{C}^{2}\right)$ (or any norm in the space of matrices) [1].
(iii) We use the matrix exponential computed in (i) and

$$
\begin{aligned}
\psi(t) & =\mathrm{e}^{-\mathrm{i} t H}\binom{1}{0} \stackrel{[1]}{=}\left(\cos (b t) \mathrm{id}_{\mathbb{C}^{2}}-\frac{\mathrm{i}}{b} \sin (b t) H\right)\binom{1}{0} \\
& \stackrel{[1]}{=}\binom{\cos (b t)}{0}-\frac{\mathrm{i}}{b} \sin (b t)\left(\begin{array}{cc}
0 & -\mathrm{i} b \\
+\mathrm{i} b & 0
\end{array}\right)\binom{1}{0} \\
& =\binom{\cos (b t)}{0}-\frac{\mathrm{i}}{b}\binom{0}{+\mathrm{i}} \stackrel{[1]}{=}\binom{\cos (b t)}{\sin (b)}
\end{aligned}
$$

Clearly, $\psi(t)$ satisfies the initial value problem: $\psi(0)=(\cos (0), \sin (0))=(1,0)[1]$.
(iv) First of all, since $\Phi_{t}=\mathrm{e}^{-\mathrm{i} t H}$ satisfies the group property,

$$
\mathrm{e}^{-\mathrm{i} t_{1} H} \mathrm{e}^{-\mathrm{i} t_{2} H}=\mathrm{e}^{-\mathrm{i}\left(t_{1}+t_{2}\right) H}
$$

the inverse is $\left(\mathrm{e}^{-\mathrm{i} t H}\right)^{-1}=\mathrm{e}^{+\mathrm{i} t H}[1]$.
On the other hand, we note that H is selfadjoint [1],

$$
\begin{aligned}
H^{*} & =\left(\begin{array}{cc}
0 & -\mathbf{i} b \\
+\mathbf{i} b & 0
\end{array}\right)^{*}=\left(\begin{array}{cc}
0 & \overline{+\mathbf{i} b} \\
-\mathbf{i} b & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -\mathbf{i} b \\
+\mathbf{i} b & 0
\end{array}\right)=H,
\end{aligned}
$$

and hence, we deduce that $\Phi_{t}=\mathrm{e}^{-\mathrm{i} t H}$ is unitary:

$$
\begin{aligned}
\left(\mathrm{e}^{-\mathrm{i} t H}\right)^{*} & \stackrel{[1]}{=}\left(\sum_{n=0}^{\infty} \frac{(-\mathrm{i} t)^{n}}{n!} H^{n}\right)^{*}=\sum_{n=0}^{\infty}\left(\frac{(-\mathrm{i} t)^{n}}{n!} H^{n}\right)^{*} \\
& \stackrel{[1]}{=} \sum_{n=0}^{\infty} \frac{(+\mathrm{i} t)^{n}}{n!} H^{* n}=\sum_{n=0}^{\infty} \frac{(+\mathrm{i} t)^{n}}{n!} H^{n} \\
& \stackrel{[1]}{=} \mathrm{e}^{+\mathrm{i} t H} \stackrel{[1]}{=}\left(\mathrm{e}^{-\mathrm{i} t H}\right)^{-1}
\end{aligned}
$$

4. Orthogonal projections (12 points)

Let P and Q be two orthogonal projections on a Hilbert space \mathcal{H}.
(i) Assume in addition $P Q=0$. Show that $P+Q$ is an orthogonal projection.
(ii) Show that either $\|P\|=0$ or $\|P\|=1$.

Solution:

(i) The condition $P Q=0$ and the selfadjointness of P and Q also imply

$$
Q P \stackrel{[1]}{=} Q^{*} P^{*} \stackrel{[1]}{=}(P Q)^{*} \stackrel{[1]}{=} 0 .
$$

Thus, $P+Q$ is a projection,

$$
(P+Q)^{2} \stackrel{[1]}{=} P^{2}+\underbrace{P Q}_{=0}+\underbrace{Q P}_{=0}+Q^{2} \stackrel{[1]}{=} P+Q .
$$

Since $P^{*}=P$ and $Q^{*}=Q$, the sum

$$
(P+Q)^{*} \stackrel{[1]}{=} P^{*}+Q^{*} \stackrel{[1]}{=} P+Q
$$

is also selfadjoint. Hence, $P+Q$ is an orthogonal projection [1].
(ii) By the properties of the Hilbert adjoint, we deduce

$$
\|P\|^{2} \stackrel{[1]}{=}\left\|P^{*} P\right\| \stackrel{[1]}{=}\left\|P^{2}\right\| \stackrel{[1]}{=}\|P\| .
$$

This equation is only satisfied if either $\|P\|=0$ or $\|P\|=1$ [1].

