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1. The heat equation (18 points)

Consider the heat equation
owu(t, z) = O%ult, z) (1)
on the interval [0, L] with Neumann boundary conditions
Oyu(t,0) =0 = Oyu(t,L).
(i) Derive the solution using separation of variables.

(i) Compute 1tlirn u(t, x) for any solution of (1), assuming you can interchange limit and sum.
—00

(iii) Give a necessary condition on the coefficients which allows you to interchange limit and sum
in (ii). Justify your answer.

(iv) Solve (1) for the initial condition u(0,z) = (cos %:1:)2
Solution:
(i) We write u(t,z) = 7(t) () [1] and plug that ansatz into (1),

() §(x) = () £"(x),

g
= ;—z_)\e(c. 1]

To determine the allowed values of A € C, we solve the equation for £ and plug in the Neumann
boundary conditions: the above equation yields a harmonic oscillator equation for &,

"-X=0, [1]
whose solution is
E(z) = aret™vA £ age ™V, 1]
The derivative needs to satisfy the boundary condition:
¢(z) = Vaa etV — Vage VA
¢(0) = \f(al — as) 20 = a1 =as 1]
(L) =V a (e*Lﬁ —el ﬁ) 0 1]

The latter condition is equivalent to e22V* = 1 and implies

2LV =i2mn, ner. 1]
Hence only
2
™ 2
)\ = _ﬁ n
are allowed for some integer n = 0, 1, . . ., and the solutions are of the form
En(z) = ta(n)(e™Mi” +e7"i%) = a(n) cosnTz. 1]



_p2rm?
Thus, the associated solutions 7,(£) = e " 22’ solve

2772

7'—n(t) = L2 (t) Tn(o) =1, [1]

and any solution to (1) is of the form

[e.e]

Z " cos niw. 1]

(ii) If we can interchange lim;_,, and the sum over n, we obtain

lim u(t, z) hm E - cosnL:c
t—o0 t—o0

(iii) A sufficient condition to allow the interchange of limit and sum is the absolute summability
of the coefficients a(n),

Z‘a(n)! < 00. [1]
n=0

2 72
Because then each of the coefficients satisfies e " ﬁt|a(n)} < |a(n)
wise for any ¢ and ,

Hut:c H<Ze L2t an)Hcosn%x‘

< Z’a(n)| < 0, [1]
n=0

and thus, by dominated convergence for sums, we may interchange limits and sums [1].

(iv) The square of the cos can be written as a double-angle cos,
(cos Tz)* = 1 (14 cos 22 z) . 1]

This means only two coefficents are non-zero, and we obtain as solution

1 L
u(t,x) = 5(1 +e 7! cos 2%3;) . 1]



2. Classical mechanics (24 points)

Consider Hamilton’s equations of motion

d (q\  (+0,H
a (5) == () ?

on R2 associated to the Hamilton function
H(p,q) = vVm? +p*+V(q).

(i) AssumeV € C?(R). Find the fixed points of the Hamiltonian vector field X ;; and characterize
the stability of each fixed point in terms of V' (stable or unstable, elliptic or hyperbolic).

(ii) Show that for V/(¢) = ¢ — 2 log(1 + ¢*) the Hamiltonian flow ® exists for all ¢t € R.

(iii) For this potential V (q) = ¢—2 log(1+¢?), find all fixed points and characterize their stability
(stable or unstable, elliptic or hyperbolic).

Solution:

(i) Fixed points satisfy the condition

p

X#(ge,pe) = <\/W> =0 [1]
~V'(q)

and thus, p. = 0 and V' (q.) = 0[1].

If we evaluate the differential of the vector field

1 0 202 | 2\ "%2
DXu(q,p) 2 (_V”(q)m (m (—)i-p)

at a critical point (¢., 0) and compute the eigenvalues [1], we arrive at

. A —m~1\ 2 B,
det(Nid — DXp(qe,0)) = det V) A =X +m V" (q).

If V”(q.) > 0, then the two eigenvalues are purely imaginary [1], and thus, the fixed point
(ge, 0) is stable and elliptic [1].

If V"(q.) < 0, then the two eigenvalues are real, one positive, one negative [1], and thus, the
fixed point (g, 0) is unstable and hyperbolic [1].

(i) We have to check whether the Hamiltonian vector field

Xir(a.p) = <+8pH(q,p)> 1y (\/m’;TpQ>

—0,H (q,p) —V'(q)

is Lipschitz on all of R? [1]. We can treat both entries separately, because the first component
only depends on p and the second depends only on ¢. The second derivative of the kinetic
energy is bounded,

T p 1 L s
83( m?2 +p2) = ap <m> = (m2 + p2) & +p (—%) 2p (m2 +p2) /2
2 (1]

_ (m +p2)_3/2 (m2 Jr102 —p2) a2 (m2 erz)

_3/2
)



(iii)

and thus, 9, (« /m? + p2) is Lipschitz [1]. Moreover, we have to check whether V" is Lipschitz,

and a sufficient condition for V' to be Lipschitz is the boundedness of V”: the power of the
numerator is smaller than the power of the strictly positive denominator [1],

4q >_ 4 8¢>

92(q—2log(1+¢%) =0, <1 —

= +
1+¢? 1+¢2  (1+4¢%)?
_ 87 —4(1+¢%) [ 4¢* —4
(1+¢?)? (1+4¢2)2’

and hence, V" is Lipschitz.

Thus, the Hamiltonian vector field X is Lipschitz for all of (¢, p) € R? [1], and by the Picard-
Lindel6f theorem, the Hamiltonian flow exists for all t € R [1].

Fixed points need to satisfy

p
Xu(q,p) = ( Vmtp > =0,

4q
-1+ 14+4¢2

and we deduce p = 0 and ¢ needs to be a critical point of ¢ — 2 log(1 + ¢?):

4q

S I
+1+q2

! 2 2 !
L0 = 142 4= —4g+1=0 1]

The zeros of this quadratic polynomial are ¢4+ = 24+/3. Hence, the fixed points are (2++/3,0)
[1].

Since the denominator of the second derivative is always positive, we only need to concern
ourselves with the sign of the numerator: V" (2 + /3) is negative,

1(1-2+V3)*) =4 (1-4-4v3-3) = ~4(6+4V3) <0, 1]
while V" (2 — \/3) is positive, because 2 — v/3 < 1, and thus
1(1-(2-v3)*) >o0. 1]
—_———
<1
>0

This means, (2 + v/3,0) is a stable, elliptic fixed point [1] while (2 — v/3, 0) is a unstable and
hyperbolic [1].



3. The Schrédinger equation for spin (17 points)

For b > 0 consider the Schrodinger equation
. d _ . 0 _i b 2
g0 = o) = (5,7 ) oo, voect, ®

on the Hilbert space C? with scalar product (1, ©) Z b ;.
7j=1,2

(i) Compute the flow ®. (Hint: Compute the powers of H explicitly.)
(ii) Elaborate in what sense ®; exists.
(iii) Solve the initial value problem for +(0) = (1,0).
(iv) Show that ®;, is unitary.

Solution:

(i) First of all, the flow is given by ®; := e~ [1]. To compute the matrix exponential explicitly,
we note that

H® =idee,
H'=H,

o (0 —ib\ [ 0 —ib) _[=b%i® 0 \ 5.
H_<+ib0 viv 0 )=\ 0 —piz) T ide

and hence, H?>" = v*"id¢2 and H?"*! = H?" H = b>* H [1]. Thus, we can split the sum for
the matrix exponential and compute it explicitly:

e—itH ;] Z (_lt) H"

= n!
R A e G L
—E_%( o T G H)
W (g DY S P ()
_<;(_1) (m)!)ld@_b(;(_l) (2n+1)!>H

g cos(bt) idcz — § sin(bt) H

(ii) e " canbe seen as the the limit of partial sums > 0 n,)n H™as N — oo which converges

in the operator norm B(C?) (or any norm in the space of matrices) [1].

(iii) We use the matrix exponential computed in (i) and

b(t) = e it (é) ) (cos(bt) idce — & sin(bt) H) ((1))
2ET) = gemen (55°) (o)
()5 (%) ()

Clearly, 1(t) satisfies the initial value problem: (0) = (cos(0),sin(0)) = (1,0) [1].



(iv) First of all, since ®; = e~ ¥ satisfies the group property,

efitlHefitQH — efi(t1+t2)H

Y

the inverse is (e 1) ™" = etitH [1],

On the other hand, we note that H is selfadjoint [1],
. (0 —ib\" [0 Fib
" _<+ib 0) _<—ib 0

0 —ib
_<+ib 0>_H’

and hence, we deduce that ®; = e~/ is unitary:

(et U (i (—;j)" H) _ i((—g)“

n=0 n=0
1] ZOO (+it)" ZOO (+it)"
= H™ =
|
= nl o n!

=

]

oith [ (e—itH)—l

)




4. Orthogonal projections (12 points)
Let P and @) be two orthogonal projections on a Hilbert space H.
(i) Assume in addition P Q = 0. Show that P + @ is an orthogonal projection.
(ii) Show that either ||P|| = 0or ||P] = 1.
Solution:

(i) The condition P ) = 0 and the selfadjointness of P and @ also imply

QP2 P U (p)y Yo

Thus, P + @ is a projection,
(P+Q)? fﬂ+PQ+QP+Qﬂ P+Q.
:0 :0

Since P* = P and Q* = @, the sum

@+Q) P“HQ P+Q

is also selfadjoint. Hence, P + @ is an orthogonal projection [1].

(ii) By the properties of the Hilbert adjoint, we deduce

11 el 2 P2 e

This equation is only satisfied if either || P|| = 0 or || P|| = 1 [1].



