

Only to be filled out by the instructor/TA:
Left room from \qquad to

Handed in early at \qquad
Remarks:

1. The heat equation ($\mathbf{1 8}$ points)

Consider the heat equation

$$
\begin{equation*}
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x) \tag{1}
\end{equation*}
$$

on the interval $[0, L]$ with Neumann boundary conditions

$$
\partial_{x} u(t, 0)=0=\partial_{x} u(t, L) .
$$

(i) Derive the solution using separation of variables.
(ii) Compute $\lim _{t \rightarrow \infty} u(t, x)$ for any solution of (1), assuming you can interchange limit and sum.
(iii) Give a necessary condition on the coefficients which allows you to interchange limit and sum in (ii). Justify your answer.
(iv) Solve (1) for the initial condition $u(0, x)=\left(\cos \frac{\pi}{L} x\right)^{2}$.

2. Classical mechanics (24 points)

Consider Hamilton's equations of motion

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{q}{p}=X_{H}:=\binom{+\partial_{p} H}{-\partial_{q} H} \tag{2}
\end{equation*}
$$

on \mathbb{R}^{2} associated to the Hamilton function

$$
H(p, q)=\sqrt{m^{2}+p^{2}}+V(q) .
$$

(i) Assume $V \in \mathcal{C}^{2}(\mathbb{R})$. Find the fixed points of the Hamiltonian vector field X_{H} and characterize the stability of each fixed point in terms of V (stable or unstable, elliptic or hyperbolic).
(ii) Show that for $V(q)=q-2 \log \left(1+q^{2}\right)$ the Hamiltonian flow Φ exists for all $t \in \mathbb{R}$.
(iii) For this potential $V(q)=q-2 \log \left(1+q^{2}\right)$, find all fixed points and characterize their stability (stable or unstable, elliptic or hyperbolic).

3. The Schrödinger equation for spin (17 points)

For $b>0$ consider the Schrödinger equation

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi(t)=H \psi(t):=\left(\begin{array}{cc}
0 & -\mathrm{i} b \\
+\mathrm{i} b & 0
\end{array}\right) \psi(t), \quad \psi(0) \in \mathbb{C}^{2},
$$

on the Hilbert space \mathbb{C}^{2} with scalar product $\langle\psi, \varphi\rangle:=\sum_{j=1,2} \overline{\psi_{j}} \varphi_{j}$.
(i) Compute the flow Φ. (Hint: Compute the powers of H explicitly.)
(ii) Elaborate in what sense Φ_{t} exists.
(iii) Solve the initial value problem for $\psi(0)=(1,0)$.
(iv) Show that Φ_{t} is unitary.

4. Orthogonal projections (12 points)

Let P and Q be two orthogonal projections on a Hilbert space \mathcal{H}.
(i) Assume in addition $P Q=0$. Show that $P+Q$ is an orthogonal projection.
(ii) Show that either $\|P\|=0$ or $\|P\|=1$.

