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1. Partial differential equation on T? (12 points)
Consider the PDE

B u—200 u+3u=f

on T? with f € C?(T?).

(i) Give the definition of the discrete Fourier transform F : L!(T¢) — ¢°°(Z%) and its inverse.
(You may assume that the sum converges.)

(ii) Find the solution w.

(iii) Investigate the smoothness of the solution, i. e. find the largest integer & so that u € C*(T?).

Solution:
(i)

(FF)E) = (271r)d /’Jl‘d dze 2 f(2)

(FH@ 2 Y feete

¢ezd

(ii) Taking the discrete Fourier transform on both sides yields

F(08,u—208,u+3u) 2 (6 — i 265 + 3)a

1 .
U +aed+3)a=7
The polynomial P(¢) = ¢§ +2£5 + 3 > 0 is positive, and hence 1/P is bounded [1]. Moreover,

given that [P~1(¢)| o |76 for large |¢|, P! is absolutely summable and F~!(P~) exists
[1]. Thus, we obtain the solution after inverse Fourier transform:

w(@) D r 1Pt Y Y ar2 F (P s f
(iii) The Fourier transform of f € C?(T?) decays at least as fast as |¢| =2 for large |¢| [1] while
[P <Cle° 1]
holds as |¢| — oo, and thus the decay of
P@ @ <cle il

for large |¢| implies v € C5(T?) (8 —d — § = 6 — 6 for some 6 € (0,1) and d = 2) [1].



2. The heat equation (14 points)

Consider the one-dimensional heat equation
Ou(t) = 202u(t) + f(t), u(0) = up € L'(R),
with inhomogeneity f.
(i) Find the solution u(t).
(ii) For the case f(t,xz) = z and ug = 0, compute u(t, z) explicitly.

(iii) Explain in what sense the solution u(t) from (ii) exists.
2 2
Hint: You may use (}'e_%m?)(f) =\ Vemh and/ dre 2% = “777 where \ > 0.
R

Solution:

(i) After applying the Fourier transform, we obtain

F(0ult) = oae) 2 F(3oRu(t) + 1)) 2 3¢t + fo)

where we have abbreviated the Fourier transforms of u(t), ug and f(t) with a(t), 4o and f(¢).
The solution to the homogeneous heat equation after Fourier transform is

at) = e 28 4. 1]

Hence, undoing the Fourier transform yields

o2
2t

u(t)) ©F 1 (e3¢ a0 ) B am) e P e 8 v U S 2

* up =: G(t) * uo.
The solution to the inhomogeneous heat equation now is
w(®) B G(#) « up + /Ot ds G(t — 5) = f(s).
(ii) For the special case up = 0 and f(¢,z) = z, we obtain

—O+/ds (t—s)xz)(z)
1]/ds/dy e 7 S)
27r(t—s)
y2
].] e 2(t 5) / 672(1575)
d d d
/ S( / Y on(i—s) V27 (t —5) yt—S \/27r(ts))
[1] t /t / e 2(t s)
= [ dsxz— [ ds(t— d
N I

t 2(t .s)
—tx—/ds(t—s) _e gtw.
0 2r(t — s)

(iii) Clearly, |u(t,x)| = t|z| grows linearly for large ||, and thus, it cannot be integrable for t > 0
[1]. But it is polynomially bounded, and thus, u(t) is a weak (or distributional) solution to the
heat equation [1].




3. Tempered distributions (23 points)
(i) Explain in what sense f(z) = (|z — 3| + 2)2 defines a tempered distribution.

(i) Compute the first two distributional derivatives of f(z) = (|z — 3| + 2)2.

.1:2
(iii) Compute the distributional Fourier transform of g(z) = x%e™ 7.

(iv) Define the translation operator (T,)(z) := ¢(x — y) for y € R. Extend T}, to the tempered
distributions in such a way that 7,6 = ¢,,.

2 2
Hint: You may use (}'e_%zz)(g) =\ V2e i and/ dre2*’ = \/; where A > 0.
R

Solution:

(i) The distribution f is defined via the integral

(f,¢) = /R de f(2) (x) 1]

where ¢ € S(R). Since f is polynomially bounded, it defines a tempered distribution.

(ii) We note that f(x) = (z — 3)2 + 4 + 4 |z — 3|, and given that ordinary derivatives and weak
derivatives of continuously differentiable functions coincide, we only need to compute the
derivatives of |z — 3| [1]. The first derivative

(61 ]:):—3\,(,0) [ —(\x—3|,8rcp)
B —/dx & — 3 Dup(x)
R

s io da (& — 3) Daspl) — /3 " 4 (& — 3) Op()
] [(m - 3) 50(:6)] o _?;O dz p(z) — {(w —-3) go(:x)} :OO + /3+OO dz o(z)

(92 ]z — 3], ) ] —(sgn(z — 3), xp)

So the two weak derivatives are:

8, f(2) Y 2(z — 3) + dsgn(z — 3)

02f(x) L2 1 88(x — 3)



(iii) ¢ is a Schwartz function, and for integrable functions, distributional and conventional Fourier

J:Q
transform coincide [1]. Because the multiplication of the GauRian e~ 2 by 22 can be converted
into taking a second derivative of the Fourier transform, we obtain

22

[1

(Fo)&) Y (Fa2e ) (e) 2 20 (Flem))(E)
U oge s = +o(e %)
U(1-g)e s,

(iv) The correct extension is (TyL, cp) = (L, T,ygo) [1], because then

1]

(Tyé, go) (L T_ygo [1] / dz d(z (a:— (—y))

o Y (6y ).



4. The free relativistic Schrodinger operator (22 points)

Consider the multiplication operator 7" defined through
) = V/m? + £24(¢)

(i) Show that T is non-negative on L?(R%),i.e. T > 0.

(ii) Solve the free relativistic Schrédinger equation in momentum representation,
i0i(t) = To(1), $(0) = %o € L*(RY).
(iii) Define the relativistic kinetic energy operator in position representation
H:=F'TF

in terms of the operator T" and the Fourier transform F : L*(R?) — L?(R?). Find the
solution ¢ (t) to the Schrédinger equation in position representation,

10 (t) = H(t), (0) = 3o € L*(RY).

(iv) Prove that the solution t(t) of (iii) satisfies || (t)]| L2(Rd) = %0l L2 (ra)-
(v) Show that H is symmetric on S(R?), 1. e. {p, Hy)) = (Hep,v) holds for all p, 1) € S(R?).

Solution:

(i) T > 0 means <zZ, Tz@ > 0 holds for all ¢ € L2(R%) [1]:

- (1]
@iy [ 4o (o) [”/ de \/m 2+52|¢ 2> 0

(i) Since T is a multiplication operator, the solution is ¢ (£, £) = e~ 1V™m*+€ 4 (¢) [1].

(iii) We apply the Fourier transform to the Schrédinger equation in position representation and
obtain

(1

Fow®) Hiadw) = F(Hyw) DT F@) 10

with initial condition J(O) = Fipg = @Zo.

The solution of the Schrédinger equation in momentum and position representation are re-
lated by the Fourier transform,

p(t) e VI Fyy = (om) 2 F (VI g,

(iv) The Fourier transform F : L?(R?) — L2?(R?) is unitary, F~! = F*, and thus norm-pre-
serving, f@DOHLQ(Rd = [[¥oll 2(ray [1]. Hence, we deduce

Ut e

U [ gefeV i€ ] Y [ delFEmer

2 (17002 gy = 00122

Hq/}(t)HLQ(Rd L2(R4)



(v) Let o, be arbitrary Schwartz functions. The unitarity of the Fourier transform as well as the
fact that 7 maps Schwartz functions onto Schwartz functions yields

<QP7H¢>E< F Tf¢> (Fo, T Fy)
[1]/ de (Fo) (&) /m? + €2 (Fu)(¢ / de \/m2 + €2 (Fp)(€) (F)(€)
U r Fo, Fy) 2 <F* Tfsmb>

d (Hop,v).




