

1. Partial differential equation on \mathbb{T}^{2} (12 points)

Consider the PDE

$$
\partial_{x_{1}}^{8} u-2 \partial_{x_{2}}^{6} u+3 u=f
$$

on \mathbb{T}^{2} with $f \in \mathcal{C}^{2}\left(\mathbb{T}^{2}\right)$.
(i) Give the definition of the discrete Fourier transform $\mathcal{F}: L^{1}\left(\mathbb{T}^{d}\right) \longrightarrow \ell^{\infty}\left(\mathbb{Z}^{d}\right)$ and its inverse. (You may assume that the sum converges.)
(ii) Find the solution u.
(iii) Investigate the smoothness of the solution, i. e. find the largest integer k so that $u \in \mathcal{C}^{k}\left(\mathbb{T}^{2}\right)$.

Solution:

(i)

$$
\begin{aligned}
&(\mathcal{F} f)(\xi) \stackrel{[1]}{=} \frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \mathrm{~d} x \mathrm{e}^{-\mathrm{i} \xi \cdot x} f(x) \\
&\left(\mathcal{F}^{-1} \hat{f}\right)(x) \stackrel{[1]}{=} \sum_{\xi \in \mathbb{Z}^{d}} \hat{f}(\xi) \mathrm{e}^{+\mathrm{i} \xi \cdot x}
\end{aligned}
$$

(ii) Taking the discrete Fourier transform on both sides yields

$$
\begin{aligned}
\mathcal{F}\left(\partial_{x_{1}}^{8} u-2 \partial_{x_{2}}^{6} u+3 u\right) & \stackrel{[1]}{=}\left(\mathrm{i}^{8} \xi_{1}^{8}-\mathrm{i}^{6} 2 \xi_{2}^{6}+3\right) \hat{u} \\
& \stackrel{[1]}{=}\left(\xi_{1}^{8}+2 \xi_{2}^{6}+3\right) \hat{u}=\hat{f}
\end{aligned}
$$

The polynomial $P(\xi)=\xi_{1}^{8}+2 \xi_{2}^{6}+3>0$ is positive, and hence $1 / P$ is bounded [1]. Moreover, given that $\left|P^{-1}(\xi)\right| \propto|\xi|^{-6}$ for large $|\xi|, P^{-1}$ is absolutely summable and $\mathcal{F}^{-1}\left(P^{-1}\right)$ exists [1]. Thus, we obtain the solution after inverse Fourier transform:

$$
u(x) \stackrel{[1]}{=} \mathcal{F}^{-1}\left(P^{-1} \hat{f}\right) \stackrel{[1]}{=}(2 \pi)^{2} \mathcal{F}^{-1}\left(P^{-1}\right) * f
$$

(iii) The Fourier transform of $f \in \mathcal{C}^{2}\left(\mathbb{T}^{2}\right)$ decays at least as fast as $|\xi|^{-2}$ for large $|\xi|$ [1] while

$$
\begin{equation*}
\left|P(\xi)^{-1}\right| \leq C|\xi|^{-6} \tag{1}
\end{equation*}
$$

holds as $|\xi| \rightarrow \infty$, and thus the decay of

$$
\begin{equation*}
\left|P^{-1}(\xi) \hat{f}(\xi)\right| \leq C^{\prime}|\xi|^{-8} \tag{1}
\end{equation*}
$$

for large $|\xi|$ implies $u \in \mathcal{C}^{5}\left(\mathbb{T}^{2}\right)(8-d-\delta=6-\delta$ for some $\delta \in(0,1)$ and $d=2)$ [1].

2. The heat equation (14 points)

Consider the one-dimensional heat equation

$$
\partial_{t} u(t)=\frac{1}{2} \partial_{x}^{2} u(t)+f(t), \quad u(0)=u_{0} \in L^{1}(\mathbb{R})
$$

with inhomogeneity f.
(i) Find the solution $u(t)$.
(ii) For the case $f(t, x)=x$ and $u_{0}=0$, compute $u(t, x)$ explicitly.
(iii) Explain in what sense the solution $u(t)$ from (ii) exists.

Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)=\lambda^{-1 / 2} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2} x^{2}}=\sqrt{\frac{2 \pi}{\lambda}}$ where $\lambda>0$.

Solution:

(i) After applying the Fourier transform, we obtain

$$
\mathcal{F}\left(\partial_{t} u(t)\right)=\partial_{t} \hat{u}(t) \stackrel{[1]}{=} \mathcal{F}\left(\frac{1}{2} \partial_{x}^{2} u(t)+f(t)\right) \stackrel{[1]}{=}-\frac{1}{2} \xi^{2} \hat{u}(t)+\hat{f}(t)
$$

where we have abbreviated the Fourier transforms of $u(t), u_{0}$ and $f(t)$ with $\hat{u}(t), \hat{u}_{0}$ and $\hat{f}(t)$. The solution to the homogeneous heat equation after Fourier transform is

$$
\begin{equation*}
\hat{u}(t)=\mathrm{e}^{-\frac{t}{2} \xi^{2}} \hat{u}_{0} . \tag{1}
\end{equation*}
$$

Hence, undoing the Fourier transform yields

$$
u(t) \stackrel{[1]}{=} \mathcal{F}^{-1}\left(\mathrm{e}^{-\frac{t}{2} \xi^{2}} \hat{u}_{0}\right) \stackrel{[1]}{=}(2 \pi)^{-1 / 2} \mathcal{F}^{-1}\left(\mathrm{e}^{-\frac{t}{2} \xi^{2}}\right) * u_{0} \stackrel{[1]}{=} \frac{\mathrm{e}^{-\frac{x^{2}}{2 t}}}{\sqrt{2 \pi t}} * u_{0}=: G(t) * u_{0}
$$

The solution to the inhomogeneous heat equation now is

$$
u(t) \stackrel{[1]}{=} G(t) * u_{0}+\int_{0}^{t} \mathrm{~d} s G(t-s) * f(s)
$$

(ii) For the special case $u_{0}=0$ and $f(t, x)=x$, we obtain

$$
\begin{aligned}
u(t, x) & \stackrel{[1]}{=} 0+\int_{0}^{t} \mathrm{~d} s(G(t-s) * x)(x) \\
& \stackrel{[1]}{=} \int_{0}^{t} \mathrm{~d} s \int_{\mathbb{R}} \mathrm{d} y(x-y) \frac{\mathrm{e}^{-\frac{y^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}} \\
& \stackrel{[1]}{=} \int_{0}^{t} \mathrm{~d} s\left(x \int_{\mathbb{R}} \mathrm{d} y \frac{\mathrm{e}^{-\frac{y^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}-(t-s) \int_{\mathbb{R}} \mathrm{d} y \frac{y}{t-s} \frac{\mathrm{e}^{-\frac{y^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}\right) \\
& \stackrel{[1]}{=} \int_{0}^{t} \mathrm{~d} s x-\int_{0}^{t} \mathrm{~d} s(t-s) \int_{\mathbb{R}} \mathrm{d} y \frac{\partial}{\partial y} \frac{\mathrm{e}^{-\frac{y^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}} \\
& =t x-\int_{0}^{t} \mathrm{~d} s(t-s)\left[\frac{\mathrm{e}^{-\frac{y^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}}\right]_{-\infty}^{+\infty} \stackrel{[1]}{=} t x .
\end{aligned}
$$

(iii) Clearly, $|u(t, x)|=t|x|$ grows linearly for large $|x|$, and thus, it cannot be integrable for $t>0$ [1]. But it is polynomially bounded, and thus, $u(t)$ is a weak (or distributional) solution to the heat equation [1].

3. Tempered distributions (23 points)

(i) Explain in what sense $f(x)=(|x-3|+2)^{2}$ defines a tempered distribution.
(ii) Compute the first two distributional derivatives of $f(x)=(|x-3|+2)^{2}$.
(iii) Compute the distributional Fourier transform of $g(x)=x^{2} \mathrm{e}^{-\frac{x^{2}}{2}}$.
(iv) Define the translation operator $\left(T_{y} \varphi\right)(x):=\varphi(x-y)$ for $y \in \mathbb{R}$. Extend T_{y} to the tempered distributions in such a way that $T_{y} \delta=\delta_{y}$.
Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)=\lambda^{-1 / 2} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2} x^{2}}=\sqrt{\frac{2 \pi}{\lambda}}$ where $\lambda>0$.

Solution:

(i) The distribution f is defined via the integral

$$
\begin{equation*}
(f, \varphi)=\int_{\mathbb{R}} \mathrm{d} x f(x) \varphi(x) \tag{1}
\end{equation*}
$$

where $\varphi \in \mathcal{S}(\mathbb{R})$. Since f is polynomially bounded, it defines a tempered distribution.
(ii) We note that $f(x)=(x-3)^{2}+4+4|x-3|$, and given that ordinary derivatives and weak derivatives of continuously differentiable functions coincide, we only need to compute the derivatives of $|x-3|$ [1]. The first derivative

$$
\begin{aligned}
\left(\partial_{x}|x-3|, \varphi\right) & \stackrel{[1]}{=}-\left(|x-3|, \partial_{x} \varphi\right) \\
& \stackrel{[1]}{=}-\int_{\mathbb{R}} \mathrm{d} x|x-3| \partial_{x} \varphi(x) \\
& \stackrel{[1]}{=}+\int_{-\infty}^{3} \mathrm{~d} x(x-3) \partial_{x} \varphi(x)-\int_{3}^{+\infty} \mathrm{d} x(x-3) \partial_{x} \varphi(x) \\
& \stackrel{[1]}{=}[(x-3) \varphi(x)]_{-\infty}^{3}-\int_{-\infty}^{3} \mathrm{~d} x \varphi(x)-[(x-3) \varphi(x)]_{3}^{+\infty}+\int_{3}^{+\infty} \mathrm{d} x \varphi(x) \\
& \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} x \operatorname{sgn}(x-3) \varphi(x)=(\operatorname{sgn}(x-3), \varphi) \\
\left(\partial_{x}^{2}|x-3|, \varphi\right) & \stackrel{[1]}{=}-\left(\operatorname{sgn}(x-3), \partial_{x} \varphi\right) \\
& \stackrel{[1]}{=}+\int_{-\infty}^{3} \mathrm{~d} x \partial_{x} \varphi(x)-\int_{3}^{+\infty} \mathrm{d} x \partial_{x} \varphi(x) \\
& \stackrel{[1]}{=}[\varphi(x)]_{-\infty}^{3}-[\varphi(x)]_{3}^{+\infty}=2 \varphi(3) \\
& \stackrel{[1]}{=}\left(2 \delta_{3}, \varphi\right)
\end{aligned}
$$

So the two weak derivatives are:

$$
\begin{aligned}
& \partial_{x} f(x) \stackrel{[1]}{=} 2(x-3)+4 \operatorname{sgn}(x-3) \\
& \partial_{x}^{2} f(x) \stackrel{[1]}{=} 2+8 \delta(x-3)
\end{aligned}
$$

(iii) g is a Schwartz function, and for integrable functions, distributional and conventional Fourier transform coincide [1]. Because the multiplication of the Gaußian $\mathrm{e}^{-\frac{x^{2}}{2}}$ by x^{2} can be converted into taking a second derivative of the Fourier transform, we obtain

$$
\begin{aligned}
(\mathcal{F} g)(\xi) & \stackrel{[1]}{=}\left(\mathcal{F}\left(x^{2} \mathrm{e}^{-\frac{x^{2}}{2}}\right)\right)(\xi) \stackrel{[1]}{=} \mathrm{i}^{2} \partial_{\xi}^{2}\left(\mathcal{F}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\right)(\xi) \\
& \stackrel{[1]}{=}-\partial_{\xi}^{2} e^{-\frac{\xi^{2}}{2}}=+\partial_{\xi}\left(\xi \mathrm{e}^{-\frac{\xi^{2}}{2}}\right) \\
& \stackrel{[1]}{=}\left(1-\xi^{2}\right) \mathrm{e}^{-\frac{\xi^{2}}{2}} .
\end{aligned}
$$

(iv) The correct extension is $\left(T_{y} L, \varphi\right):=\left(L, T_{-y} \varphi\right)$ [1], because then

$$
\begin{aligned}
\left(T_{y} \delta, \varphi\right) & \stackrel{[1]}{=}\left(L, T_{-y} \varphi\right) \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} x \delta(x) \varphi(x-(-y)) \\
& \stackrel{[1]}{=} \varphi(y) \stackrel{[1]}{=}\left(\delta_{y}, \varphi\right) .
\end{aligned}
$$

4. The free relativistic Schrödinger operator (22 points)

Consider the multiplication operator T defined through

$$
(T \widehat{\psi})(\xi):=\sqrt{m^{2}+\xi^{2}} \widehat{\psi}(\xi)
$$

(i) Show that T is non-negative on $L^{2}\left(\mathbb{R}^{d}\right)$, i. e. $T \geq 0$.
(ii) Solve the free relativistic Schrödinger equation in momentum representation,

$$
\mathrm{i} \partial_{t} \widehat{\psi}(t)=T \widehat{\psi}(t), \quad \widehat{\psi}(0)=\widehat{\psi}_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

(iii) Define the relativistic kinetic energy operator in position representation

$$
H:=\mathcal{F}^{-1} T \mathcal{F}
$$

in terms of the operator T and the Fourier transform $\mathcal{F}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$. Find the solution $\psi(t)$ to the Schrödinger equation in position representation,

$$
\mathrm{i} \partial_{t} \psi(t)=H \psi(t), \quad \psi(0)=\psi_{0} \in L^{2}\left(\mathbb{R}^{d}\right)
$$

(iv) Prove that the solution $\psi(t)$ of (iii) satisfies $\|\psi(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}$.
(v) Show that H is symmetric on $\mathcal{S}\left(\mathbb{R}^{d}\right)$, i. e. $\langle\varphi, H \psi\rangle=\langle H \varphi, \psi\rangle$ holds for all $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

Solution:

(i) $T \geq 0$ means $\langle\widehat{\psi}, T \widehat{\psi}\rangle \geq 0$ holds for all $\widehat{\psi} \in L^{2}\left(\mathbb{R}^{d}\right)[1]$:

$$
\langle\widehat{\psi}, T \widehat{\psi}\rangle \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} \xi \overline{\widehat{\psi}(\xi)}(T \hat{\psi})(\xi) \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} \xi \underbrace{\sqrt{m^{2}+\xi^{2}}|\widehat{\psi}(\xi)|^{2}}_{\geq 0} \stackrel{[1]}{\geq} 0
$$

(ii) Since T is a multiplication operator, the solution is $\widehat{\psi}(t, \xi)=\mathrm{e}^{-\mathrm{i} t \sqrt{m^{2}+\xi^{2}}} \widehat{\psi}_{0}(\xi)$ [1].
(iii) We apply the Fourier transform to the Schrödinger equation in position representation and obtain

$$
\mathcal{F}\left(\mathrm{i} \partial_{t} \psi(t)\right) \stackrel{[1]}{=} \mathrm{i} \partial_{t} \widehat{\psi}(t)=\mathcal{F}(H \psi(t)) \stackrel{[1]}{=} T \mathcal{F} \psi(t) \stackrel{[1]}{=} T \widehat{\psi}(t)
$$

with initial condition $\widehat{\psi}(0)=\mathcal{F} \psi_{0}=\widehat{\psi}_{0}$.
The solution of the Schrödinger equation in momentum and position representation are related by the Fourier transform,

$$
\psi(t) \stackrel{[1]}{=} \mathcal{F}^{-1} \mathrm{e}^{-\mathrm{i} t \sqrt{m^{2}+\xi^{2}}} \mathcal{F} \psi_{0}=(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left(\mathrm{e}^{-\mathrm{i} t \sqrt{m^{2}+\xi^{2}}}\right) * \psi_{0}
$$

(iv) The Fourier transform $\mathcal{F}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is unitary, $\mathcal{F}^{-1}=\mathcal{F}^{*}$, and thus norm-preserving, $\left\|\mathcal{F} \psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}[1]$. Hence, we deduce

$$
\begin{aligned}
\|\psi(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \stackrel{[1]}{=}\left\|\mathcal{F}^{-1} \mathrm{e}^{-\mathrm{it} \sqrt{m^{2}+\xi^{2}}} \mathcal{F} \psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \stackrel{[1]}{=} \| \mathrm{e}^{-\mathrm{i} t \sqrt{m^{2}+\xi^{2}} \mathcal{F} \psi_{0} \|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}} \begin{aligned}
& \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} \xi\left|\mathrm{e}^{-\mathrm{i} t \sqrt{m^{2}+\xi^{2}}}\left(\mathcal{F} \psi_{0}\right)(\xi)\right|^{[\stackrel{[1]}{=}} \int_{\mathbb{R}^{d}} \mathrm{~d} \xi\left|\left(\mathcal{F} \psi_{0}\right)(\xi)\right|^{2} \\
& \stackrel{[1]}{=}\left\|\mathcal{F} \psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \stackrel{[1]}{=}\left\|\psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} .
\end{aligned} .
\end{aligned}
$$

(v) Let φ, ψ be arbitrary Schwartz functions. The unitarity of the Fourier transform as well as the fact that \mathcal{F} maps Schwartz functions onto Schwartz functions yields

$$
\begin{aligned}
\langle\varphi, H \psi\rangle & \stackrel{[1]}{=}\left\langle\varphi, \mathcal{F}^{-1} T \mathcal{F} \psi\right\rangle \stackrel{[1]}{=}\langle\mathcal{F} \varphi, T \mathcal{F} \psi\rangle \\
& \stackrel{[1]}{=} \int_{\mathbb{R}^{d}} \mathrm{~d} \xi \overline{(\mathcal{F} \varphi)(\xi)} \sqrt{m^{2}+\xi^{2}}(\mathcal{F} \psi)(\xi)=\int_{\mathbb{R}^{d}} \mathrm{~d} \xi \overline{\sqrt{m^{2}+\xi^{2}}(\mathcal{F} \varphi)(\xi)}(\mathcal{F} \psi)(\xi) \\
& \stackrel{[1]}{=}\langle T \mathcal{F} \varphi, \mathcal{F} \psi\rangle \stackrel{[1]}{=}\left\langle\mathcal{F}^{-1} T \mathcal{F} \varphi, \psi\right\rangle \\
& \stackrel{[1]}{=}\langle H \varphi, \psi\rangle .
\end{aligned}
$$

