		Grade	
		Ι	П
Last name First name		1	
Student id # Major		2	
		3	
Signature		4	
University of Toronto Department of Mathematics	Σ		
Test 2 Differential Equations of Mathematical Physi	ics	I First corre	ction
(APM 351 Y)		II Second correction	
30 January 2014, 09:10–10:50, Sidney Smith Hall, SS 1074			
Remarks: Please verify the completeness of the exam: 4 problems			
Time allotted: 90 minutes			
Allowed aids: none			

Only to be filled out by the instructor/TA:

Left room from to

Handed in early at

Remarks:

1. Partial differential equation on \mathbb{T}^2 (12 points) Consider the PDE

$$\partial_{x_1}^8 u - 2\partial_{x_2}^6 u + 3u = f$$

on \mathbb{T}^2 with $f \in \mathcal{C}^2(\mathbb{T}^2)$.

- (i) Give the definition of the discrete Fourier transform $\mathcal{F}: L^1(\mathbb{T}^d) \longrightarrow \ell^{\infty}(\mathbb{Z}^d)$ and its inverse. (You may assume that the sum converges.)
- (ii) Find the solution *u*.
- (iii) Investigate the smoothness of the solution, i. e. find the largest integer k so that $u \in C^k(\mathbb{T}^2)$.

2. The heat equation (14 points)

Consider the one-dimensional heat equation

$$\partial_t u(t) = \frac{1}{2} \partial_x^2 u(t) + f(t), \qquad u(0) = u_0 \in L^1(\mathbb{R}),$$

with inhomogeneity f.

- (i) Find the solution u(t).
- (ii) For the case f(t, x) = x and $u_0 = 0$, compute u(t, x) explicitly.
- (iii) Explain in what sense the solution u(t) from (ii) exists.

$$\textbf{Hint: You may use } \big(\mathcal{F}\mathsf{e}^{-\frac{\lambda}{2}x^2}\big)(\xi) = \lambda^{-1/2}\,\mathsf{e}^{-\frac{\xi^2}{2\lambda}} \text{ and } \int_{\mathbb{R}} \mathsf{d}x\,\mathsf{e}^{-\frac{\lambda}{2}x^2} = \sqrt{\frac{2\pi}{\lambda}} \text{ where } \lambda > 0.$$

3. Tempered distributions (23 points)

- (i) Explain in what sense $f(x) = (|x-3|+2)^2$ defines a tempered distribution.
- (ii) Compute the first two distributional derivatives of $f(x) = (|x-3|+2)^2$.
- (iii) Compute the distributional Fourier transform of $g(x) = x^2 e^{-\frac{x^2}{2}}$.
- (iv) Define the translation operator $(T_y \varphi)(x) := \varphi(x-y)$ for $y \in \mathbb{R}$. Extend T_y to the tempered distributions in such a way that $T_y \delta = \delta_y$.

 $\text{Hint: You may use } \big(\mathcal{F}\mathrm{e}^{-\frac{\lambda}{2}x^2}\big)(\xi) = \lambda^{-1/2}\,\mathrm{e}^{-\frac{\xi^2}{2\lambda}} \text{ and } \int_{\mathbb{R}}\mathrm{d}x\,\mathrm{e}^{-\frac{\lambda}{2}x^2} = \sqrt{\frac{2\pi}{\lambda}} \text{ where } \lambda > 0.$

4. The free relativistic Schrödinger operator (22 points) Consider the multiplication operator T defined through $(T\widehat{\psi})(\xi) := \sqrt{m^2 + \xi^2} \widehat{\psi}(\xi).$ (i) Show that T is non-negative on $L^2(\mathbb{R}^d)$, i. e. $T \ge 0$. (ii) Solve the free relativistic Schrödinger equation in momentum representation, $i \partial_t \widehat{\psi}(t) = T\widehat{\psi}(t), \qquad \widehat{\psi}(0) = \widehat{\psi}_0 \in L^2(\mathbb{R}^d).$ (iii) Define the relativistic kinetic energy operator in position representation $H := \mathcal{F}^{-1}T\mathcal{F}$ in terms of the operator T and the Fourier transform $\mathcal{F} : L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{R}^d).$ Find the solution $\psi(t)$ to the Schrödinger equation in position representation, $i \partial_t \psi(t) = H\psi(t), \qquad \psi(0) = \psi_0 \in L^2(\mathbb{R}^d).$ (iv) Prove that the solution $\psi(t)$ of (iii) satisfies $\|\psi(t)\|_{L^2(\mathbb{R}^d)} = \|\psi_0\|_{L^2(\mathbb{R}^d)}.$

(v) Show that H is symmetric on $\mathcal{S}(\mathbb{R}^d)$, i. e. $\langle \varphi, H\psi \rangle = \langle H\varphi, \psi \rangle$ holds for all $\varphi, \psi \in \mathcal{S}(\mathbb{R}^d)$.