

Only to be filled out by the instructor/TA:
Left room
from \qquad to \qquad

Handed in early at \qquad

Remarks:

1. Partial differential equation on \mathbb{T}^{2} (12 points)

Consider the PDE

$$
\partial_{x_{1}}^{8} u-2 \partial_{x_{2}}^{6} u+3 u=f
$$

on \mathbb{T}^{2} with $f \in \mathcal{C}^{2}\left(\mathbb{T}^{2}\right)$.
(i) Give the definition of the discrete Fourier transform $\mathcal{F}: L^{1}\left(\mathbb{T}^{d}\right) \longrightarrow \ell^{\infty}\left(\mathbb{Z}^{d}\right)$ and its inverse. (You may assume that the sum converges.)
(ii) Find the solution u.
(iii) Investigate the smoothness of the solution, i. e. find the largest integer k so that $u \in \mathcal{C}^{k}\left(\mathbb{T}^{2}\right)$.

2. The heat equation (14 points)

Consider the one-dimensional heat equation

$$
\partial_{t} u(t)=\frac{1}{2} \partial_{x}^{2} u(t)+f(t), \quad u(0)=u_{0} \in L^{1}(\mathbb{R}),
$$

with inhomogeneity f.
(i) Find the solution $u(t)$.
(ii) For the case $f(t, x)=x$ and $u_{0}=0$, compute $u(t, x)$ explicitly.
(iii) Explain in what sense the solution $u(t)$ from (ii) exists.

Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)=\lambda^{-1 / 2} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2} x^{2}}=\sqrt{\frac{2 \pi}{\lambda}}$ where $\lambda>0$.

3. Tempered distributions (23 points)

(i) Explain in what sense $f(x)=(|x-3|+2)^{2}$ defines a tempered distribution.
(ii) Compute the first two distributional derivatives of $f(x)=(|x-3|+2)^{2}$.
(iii) Compute the distributional Fourier transform of $g(x)=x^{2} \mathrm{e}^{-\frac{x^{2}}{2}}$.
(iv) Define the translation operator $\left(T_{y} \varphi\right)(x):=\varphi(x-y)$ for $y \in \mathbb{R}$. Extend T_{y} to the tempered distributions in such a way that $T_{y} \delta=\delta_{y}$.

Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda}{2} x^{2}}\right)(\xi)=\lambda^{-1 / 2} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\frac{\lambda}{2} x^{2}}=\sqrt{\frac{2 \pi}{\lambda}}$ where $\lambda>0$.

4. The free relativistic Schrödinger operator (22 points)

Consider the multiplication operator T defined through

$$
(T \widehat{\psi})(\xi):=\sqrt{m^{2}+\xi^{2}} \widehat{\psi}(\xi) .
$$

(i) Show that T is non-negative on $L^{2}\left(\mathbb{R}^{d}\right)$, i. e. $T \geq 0$.
(ii) Solve the free relativistic Schrödinger equation in momentum representation,

$$
\mathrm{i} \partial_{t} \widehat{\psi}(t)=T \widehat{\psi}(t), \quad \widehat{\psi}(0)=\widehat{\psi}_{0} \in L^{2}\left(\mathbb{R}^{d}\right) .
$$

(iii) Define the relativistic kinetic energy operator in position representation

$$
H:=\mathcal{F}^{-1} T \mathcal{F}
$$

in terms of the operator T and the Fourier transform $\mathcal{F}: L^{2}\left(\mathbb{R}^{d}\right) \longrightarrow L^{2}\left(\mathbb{R}^{d}\right)$. Find the solution $\psi(t)$ to the Schrödinger equation in position representation,

$$
\mathbf{i} \partial_{t} \psi(t)=H \psi(t), \quad \psi(0)=\psi_{0} \in L^{2}\left(\mathbb{R}^{d}\right) .
$$

(iv) Prove that the solution $\psi(t)$ of (iii) satisfies $\|\psi(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\left\|\psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}$.
(v) Show that H is symmetric on $\mathcal{S}\left(\mathbb{R}^{d}\right)$, i. e. $\langle\varphi, H \psi\rangle=\langle H \varphi, \psi\rangle$ holds for all $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

