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1. The framework of quantum mechanics (12 points)
Consider a quantum particle moving in Rd.
(i) Give an example of a Schrödinger operator. Explain the physical meaning of each of the terms.
(ii) State the Schrödinger equation.
(iii) Give the notion of observable, state and dynamical equation.

(iv) Show thatH = H∗ implies
∥∥e−itHψ

∥∥2 = ∥ψ∥2 for all t ∈ R.
(v) Explain the significance of (iv) for the Born rule.

Solution:

(i) H = −∆x + V [1] where−∆x is the kinetic energy and V is the potential energy [1].
(ii) i ℏ ∂tψ(t) = Hψ(t), ψ(0) = ψ0 ∈ L2(Rd) where ℏ is Planck’s constant [1]
(iii) Observables are selfadjoint operators F = F ∗ on L2(Rd) with dense domainD(F ). [1]

States are density operators ρ, i. e. operators which satisfy ρ∗ = ρ ≥ 0 [1] and Tr ρ = 1 [1].
Dynamical equation: Heisenberg equation for observables:

d
dtF (t) =

i
ℏ
[
H,F (t)

]
, F (0) = F [1]

Liouville equation for states:

d
dtρ(t) = − i

ℏ
[
H, ρ(t)

]
, ρ(0) = ρ

(Giving one dynamical equation suffices. Also the Schrödinger equation is accepted as solu-
tion. ℏ need not be present to get full points.)

(iv) At t = 0, clearly
∥∥e−itHψ

∥∥2 ∣∣
t=0

= ∥ψ∥2 = 1 [1], and since the time-derivative vanishes,

d
dt
∥∥e−itHψ

∥∥2 [1]
=
⟨
−iH e−itHψ, e−itHψ

⟩
+
⟨
e−itHψ,−iH e−itHψ

⟩
= i
⟨
e−itHψ,

(
H∗ −H

)
e−itHψ

⟩ [1]
= 0,∥∥e−itHψ

∥∥2 = ∥ψ∥2 holds for all t ∈ R [1].

(v) The Born rule states that
∣∣ψ(t, x)∣∣2 is a probability density inRd, so the physical interpretation

of (iv) is the conservation of probability. [1]
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2. The Birman-Schwinger principle (6 points)
Consider the Schrödinger operatorH = −∆x + V on Rd where V ≤ 0 is a non-positive potential
which decays at∞, lim

|x|→∞
V (x) = 0.

(i) Give the Birman-Schwinger operatorKE and state the Birman-Schwinger principle.
(ii) Give a sufficient condition onKE for the absence of eigenvalues ofH at−E < 0.

Solution:

(i) The Birman-Schwinger operator is defined as

KE = |V |1/2
(
−∆x + E

)−1 |V |1/2. [2]

The Birman-Schwinger principle statesH has an eigenvalue at −E, E > 0, if and only if the
Birman-Schwinger operatorKE has an eigenvalue at 1. [2]

(ii) For instance, if ∥KE∥ < 1 [1] thenKE cannot have an eigenvalue at 1, and thus by the Birman-
Schwinger principleH cannot have an eigenvalue at−E [1].
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3. Green’s functions for −∂2x + E (14 points)
Consider the linear operator LE := −∂2x + E for E > 0 on R. Define the function

RE(x) :=
e−

√
E |x|

2
√
E

.

(i) Compute
(
−∂2x + E

)
RE(x) in the sense of tempered distributions.

(ii) Find the Green’s functionG(x, y) to the operator LE .
(iii) Given φ ∈ L2(R), solve LEψ = φ for ψ.

Solution:

(i) Let us first compute the second weak derivative of RE : for any φ ∈ S(R), we compute

(
−∂2xRE , φ

) [1]
= −

(
RE , ∂

2
xφ
) [1]
= −

∫ 0

−∞
dx e+

√
E x

2
√
E

∂2xφ(x)−
∫ +∞

0
dx e−

√
E x

2
√
E

∂2xφ(x)

[2]
= −

[
e+

√
E x

2
√
E

∂xφ(x)

]0
−∞

+

∫ 0

−∞
dx 1

2
e+

√
E x ∂xφ(x)+

−

[
e−

√
E x

2
√
E

∂xφ(x)

]+∞

0

−
∫ +∞

0
dx 1

2
e−

√
E x ∂xφ(x)

[2]
= −∂xφ(0)

2
√
E

+
∂xφ(0)

2
√
E

+
[
1
2e

+
√
E x φ(x)

]0
−∞

−
∫ 0

−∞
dx

√
E

2
e+

√
E x φ(x)+

−
[
1
2e

−
√
E x φ(x)

]+∞

0
−
∫ +∞

0
dx

√
E

2
e−

√
E x φ(x)

[2]
= φ(0)− E

∫
R
dx e−

√
E |x|

2
√
E

φ(x)
[1]
=
(
δ − ERE , φ

)
,

and hence, LE applied to RE yields(
−∂2x + E

)
RE

[1]
= δ − ERE +ERE

[1]
= δ.

(ii) The Green’s function isG(x, y) := RE(x− y) because LEG(x, y) = δ(x− y) by (i) [2].
(iii) The solution to LEu = f is given by

u(x) =

∫
R
dxG(x, y) f(y) = RE ∗ f(x). [1]
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4. Symmetric operators (4 points)
Show thatH = −∂2x is symmetric on

D :=
{
ψ ∈ C2([0, 1]) | φ(0) = 0 = φ(1)

}
⊂ L2([0, 1]).

Solution:
Let φ,ψ ∈ D.

⟨φ,Hψ⟩ [1]
= −

∫ 1

0
dxφ(x) ∂2xψ(x)

[1]
= −

[
φ(x) ∂xψ(x)

]1
0︸ ︷︷ ︸

=0

+

∫ 1

0
dx ∂xφ(x) ∂xψ(x) =

∫ 1

0
dx ∂xφ(x) ∂xψ(x)

[1]
=
[
∂xφ(x)ψ(x)

]1
0︸ ︷︷ ︸

=0

−
∫ 1

0
dx ∂2xφ(x)ψ(x)

[1]
= ⟨Hφ,ψ⟩
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5. The quantum energy functional (15 points)
Define the average energy

E(φ) =
∫
R
dx
(∣∣∂xφ(x)∣∣2 + V (x)

∣∣φ(x)∣∣2)
associated to the quantum hamiltonianH = −∂2x + V and φ ∈ S(R) for the potential

V (x) =

{
−x 0 ≤ x ≤ 1

0 else
. (1)

Moreover, define the family of scaled Gaußians φλ(x) := π−1/4
√
λ e−λ2

2
x2 for λ > 0.

(i) Determine the expected value of the energy E(λ) := E(φλ).
(ii) Express E(λ) as a power series in λ.
(iii) Use the quadratic approximation of E(λ) = e0 + λ e1 + λ2 e2 +O(λ3) to minimize E(λ) for

small λ. Compute the minimum of E(λ) up toO(λ3).
(iv) Does this hamiltonian have a bound state? Justify your answer.

Hint: You may use
(
Fe−

λ2

2
x2)

(ξ) = λ−1 e−
ξ2

2λ2 and
∫
R
dx e−λ2x2

=

√
π

λ
where λ > 0.

Solution:
(i) We first compute the kinetic energy part:∫

R
dx
∣∣∂xφ(x)∣∣2 [1]

=

∫
R
dx λ√

π

(
−λ2 x e−

λ2

2
x2
)2

=
1√
π

∫
R
dxλ5 x2 e−λ2x2

=
λ2√
π

∫
R
d(λx) (λx)2 e−(λx)2 [1]

=
λ2√
π

∫
R
dy y · y e−y2

[1]
=

λ2√
π

[
−1

2
y e−y2

]+∞

−∞
+

λ2

2
√
π

∫
R
dy e−y2 =

λ2

2
√
π

√
π

[1]
=
λ2

2

The expectation value of the potential energy is∫
R
dxV (x)

∣∣∂xφ(x)∣∣2 [1]
= − 1√

π

∫ 1

0
dxλx e−λ2x2 [1]

= − 1

λ
√
π

∫ 1

0
d(λx) (λx) e−(λx)2

[1]
= +

1

λ
√
π

[
1
2 e

−λ2x2
]1
0

[1]
=

1

λ 2
√
π

(
e−λ2 − 1

)
.

So overall, the energy expectation value with respect to φλ combines to

E(λ)
[1]
=
λ2

2
+

1

λ 2
√
π

(
e−λ2 − 1

)
.

(ii) We plug in the exponential series and use that the first term of the series cancels:

E(λ)
[1]
=
λ2

2
+

1

λ 2
√
π

( ∞∑
n=0

(−1)n

n!
λ2n − 1

)
[1]
=
λ2

2
+

1

2
√
π

∞∑
n=1

(−1)n

n!
λ2n−1

=
λ2

2
− λ

2
√
π
+O(λ3)
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(iii) The derivative of E is

E′(λ) = λ− 1
2
√
π
+O(λ2)

!
= 0. [1]

Thatmeans the critical point is approximatelyλmin ≈ 1
2
√
π
[1]. Given thatE′′(λ) = 1+O(λ) >

0 this point is actually a minimum [1] and the energy at the critical energy is

E
(

1
2
√
π

)
≈ 1

8π
− 1

4π
= − 1

8π
[1]

up to errors of higher order.
(iv) V ̸= 0 is a non-positive potential in one dimension. Then by Theorem 9.3.7, a bound state

exists [1].
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6. The spectrum of an operator (5 points)
Let T be a bounded operator on a Hilbert space H1 and U : H1 −→ H2 a unitary between two
Hilbert spaces. Show σ(T ) = σ

(
U T U−1

)
.

Solution:
The spectrum σ(T ) is comprised of those z ∈ C for which T − z is not invertible [1]. Since(

U (T − z)U−1
)−1

=
(
U−1

)−1
(T − z)−1 U−1 = U (T − z)−1 U−1 [1]

the operator T −z is invertible if and only ifU T U−1−z [1]
= U

(
T −z

)
U−1 is invertible [1]. Hence,

σ(T ) = σ
(
U T U−1

)
[1].
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