

1. The framework of quantum mechanics (12 points)

Consider a quantum particle moving in \mathbb{R}^{d}.
(i) Give an example of a Schrödinger operator. Explain the physical meaning of each of the terms.
(ii) State the Schrödinger equation.
(iii) Give the notion of observable, state and dynamical equation.
(iv) Show that $H=H^{*}$ implies $\left\|\mathrm{e}^{-\mathrm{i} t H} \psi\right\|^{2}=\|\psi\|^{2}$ for all $t \in \mathbb{R}$.
(v) Explain the significance of (iv) for the Born rule.

Solution:

(i) $H=-\Delta_{x}+V[1]$ where $-\Delta_{x}$ is the kinetic energy and V is the potential energy [1].
(ii) $\mathrm{i} \hbar \partial_{t} \psi(t)=H \psi(t), \psi(0)=\psi_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ where \hbar is Planck's constant [1]
(iii) Observables are selfadjoint operators $F=F^{*}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with dense domain $\mathcal{D}(F)$. [1] States are density operators ρ, i. e. operators which satisfy $\rho^{*}=\rho \geq 0$ [1] and $\operatorname{Tr} \rho=1$ [1].
Dynamical equation: Heisenberg equation for observables:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=\frac{\mathrm{i}}{\hbar}[H, F(t)], \quad F(0)=F \tag{1}
\end{equation*}
$$

Liouville equation for states:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)=-\frac{\mathrm{i}}{\hbar}[H, \rho(t)], \quad \rho(0)=\rho
$$

(Giving one dynamical equation suffices. Also the Schrödinger equation is accepted as solution. \hbar need not be present to get full points.)
(iv) At $t=0$, clearly $\left.\left\|\mathrm{e}^{-\mathrm{i} t H} \psi\right\|^{2}\right|_{t=0}=\|\psi\|^{2}=1$ [1], and since the time-derivative vanishes,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathrm{e}^{-\mathrm{i} t H} \psi\right\|^{2} & \stackrel{[1]}{=}\left\langle-\mathrm{i} H \mathrm{e}^{-\mathrm{i} t H} \psi, \mathrm{e}^{-\mathrm{i} t H} \psi\right\rangle+\left\langle\mathrm{e}^{-\mathrm{i} t H} \psi,-\mathrm{i} H \mathrm{e}^{-\mathrm{i} t H} \psi\right\rangle \\
& =\mathrm{i}\left\langle\mathrm{e}^{-\mathrm{i} t H} \psi,\left(H^{*}-H\right) \mathrm{e}^{-\mathrm{i} t H} \psi\right\rangle \stackrel{[1]}{=} 0
\end{aligned}
$$

$\left\|\mathrm{e}^{-\mathrm{i} t H} \psi\right\|^{2}=\|\psi\|^{2}$ holds for all $t \in \mathbb{R}[1]$.
(v) The Born rule states that $|\psi(t, x)|^{2}$ is a probability density in \mathbb{R}^{d}, so the physical interpretation of (iv) is the conservation of probability. [1]

2. The Birman-Schwinger principle (6 points)

Consider the Schrödinger operator $H=-\Delta_{x}+V$ on \mathbb{R}^{d} where $V \leq 0$ is a non-positive potential which decays at $\infty, \lim _{|x| \rightarrow \infty} V(x)=0$.
(i) Give the Birman-Schwinger operator K_{E} and state the Birman-Schwinger principle.
(ii) Give a sufficient condition on K_{E} for the absence of eigenvalues of H at $-E<0$.

Solution:

(i) The Birman-Schwinger operator is defined as

$$
\begin{equation*}
K_{E}=|V|^{1 / 2}\left(-\Delta_{x}+E\right)^{-1}|V|^{1 / 2} \tag{2}
\end{equation*}
$$

The Birman-Schwinger principle states H has an eigenvalue at $-E, E>0$, if and only if the Birman-Schwinger operator K_{E} has an eigenvalue at 1. [2]
(ii) For instance, if $\left\|K_{E}\right\|<1$ [1] then K_{E} cannot have an eigenvalue at 1, and thus by the BirmanSchwinger principle H cannot have an eigenvalue at $-E$ [1].
3. Green's functions for $-\partial_{x}^{2}+E$ ($\mathbf{1 4}$ points)

Consider the linear operator $L_{E}:=-\partial_{x}^{2}+E$ for $E>0$ on \mathbb{R}. Define the function

$$
R_{E}(x):=\frac{\mathrm{e}^{-\sqrt{E}|x|}}{2 \sqrt{E}}
$$

(i) Compute $\left(-\partial_{x}^{2}+E\right) R_{E}(x)$ in the sense of tempered distributions.
(ii) Find the Green's function $G(x, y)$ to the operator L_{E}.
(iii) Given $\varphi \in L^{2}(\mathbb{R})$, solve $L_{E} \psi=\varphi$ for ψ.

Solution:

(i) Let us first compute the second weak derivative of R_{E} : for any $\varphi \in \mathcal{S}(\mathbb{R})$, we compute

$$
\begin{aligned}
&\left(-\partial_{x}^{2} R_{E}, \varphi\right) \stackrel{[1]}{=}-\left(R_{E}, \partial_{x}^{2} \varphi\right) \stackrel{[1]}{=}-\int_{-\infty}^{0} \mathrm{~d} x \frac{\mathrm{e}^{+\sqrt{E} x}}{2 \sqrt{E}} \partial_{x}^{2} \varphi(x)-\int_{0}^{+\infty} \mathrm{d} x \frac{\mathrm{e}^{-\sqrt{E} x}}{2 \sqrt{E}} \partial_{x}^{2} \varphi(x) \\
& \stackrel{[2]}{=}-\left[\frac{\mathrm{e}^{+\sqrt{E} x}}{2 \sqrt{E}} \partial_{x} \varphi(x)\right]_{-\infty}^{0}+\int_{-\infty}^{0} \mathrm{~d} x \frac{1}{2} \mathrm{e}^{+\sqrt{E} x} \partial_{x} \varphi(x)+ \\
&-\left[\frac{\mathrm{e}^{-\sqrt{E} x}}{2 \sqrt{E}} \partial_{x} \varphi(x)\right]_{0}^{+\infty}-\int_{0}^{+\infty} \mathrm{d} x \frac{1}{2} \mathrm{e}^{-\sqrt{E} x} \partial_{x} \varphi(x) \\
& \stackrel{[2]}{=}-\frac{\partial_{x} \varphi(0)}{2 \sqrt{E}}+\frac{\partial_{x} \varphi(0)}{2 \sqrt{E}}+\left[\frac{1}{2} \mathrm{e}^{+\sqrt{E} x} \varphi(x)\right]_{-\infty}^{0}-\int_{-\infty}^{0} \mathrm{~d} x \frac{\sqrt{E}}{2} \mathrm{e}^{+\sqrt{E} x} \varphi(x)+ \\
&-\left[\frac{1}{2} \mathrm{e}^{-\sqrt{E} x} \varphi(x)\right]_{0}^{+\infty}-\int_{0}^{+\infty} \mathrm{d} x \frac{\sqrt{E}}{2} \mathrm{e}^{-\sqrt{E} x} \varphi(x) \\
& \stackrel{[2]}{=} \varphi(0)-E \int_{\mathbb{R}} \mathrm{d} x \frac{\mathrm{e}^{-\sqrt{E}|x|}}{2 \sqrt{E}} \varphi(x) \stackrel{[1]}{=}\left(\delta-E R_{E}, \varphi\right),
\end{aligned}
$$

and hence, L_{E} applied to R_{E} yields

$$
\left(-\partial_{x}^{2}+E\right) R_{E} \stackrel{[1]}{=} \delta-E R_{E}+E R_{E} \stackrel{[1]}{=} \delta .
$$

(ii) The Green's function is $G(x, y):=R_{E}(x-y)$ because $L_{E} G(x, y)=\delta(x-y)$ by (i) [2].
(iii) The solution to $L_{E} u=f$ is given by

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}} \mathrm{d} x G(x, y) f(y)=R_{E} * f(x) \tag{1}
\end{equation*}
$$

4. Symmetric operators (4 points)

Show that $H=-\partial_{x}^{2}$ is symmetric on

$$
\mathcal{D}:=\left\{\psi \in \mathcal{C}^{2}([0,1]) \mid \varphi(0)=0=\varphi(1)\right\} \subset L^{2}([0,1])
$$

Solution:

Let $\varphi, \psi \in \mathcal{D}$.

$$
\begin{aligned}
\langle\varphi, H \psi\rangle & \stackrel{[1]}{=}-\int_{0}^{1} \mathrm{~d} x \overline{\varphi(x)} \partial_{x}^{2} \psi(x) \\
& \stackrel{[1]}{=}-\underbrace{\left[\overline{\varphi(x)} \partial_{x} \psi(x)\right]_{0}^{1}}_{=0}+\int_{0}^{1} \mathrm{~d} x \overline{\partial_{x} \varphi(x)} \partial_{x} \psi(x)=\int_{0}^{1} \mathrm{~d} x \overline{\partial_{x} \varphi(x)} \partial_{x} \psi(x) \\
& \stackrel{[1]}{=} \underbrace{\left[\overline{\partial_{x} \varphi(x)} \psi(x)\right]_{0}^{1}}_{=0}-\int_{0}^{1} \mathrm{~d} x \overline{\partial_{x}^{2} \varphi(x)} \psi(x) \stackrel{[1]}{=}\langle H \varphi, \psi\rangle
\end{aligned}
$$

5. The quantum energy functional (15 points)

Define the average energy

$$
\mathcal{E}(\varphi)=\int_{\mathbb{R}} \mathrm{d} x\left(\left|\partial_{x} \varphi(x)\right|^{2}+V(x)|\varphi(x)|^{2}\right)
$$

associated to the quantum hamiltonian $H=-\partial_{x}^{2}+V$ and $\varphi \in \mathcal{S}(\mathbb{R})$ for the potential

$$
V(x)= \begin{cases}-x & 0 \leq x \leq 1 \tag{1}\\ 0 & \text { else }\end{cases}
$$

Moreover, define the family of scaled Gaußians $\varphi_{\lambda}(x):=\pi^{-1 / 4} \sqrt{\lambda} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}$ for $\lambda>0$.
(i) Determine the expected value of the energy $E(\lambda):=\mathcal{E}\left(\varphi_{\lambda}\right)$.
(ii) Express $E(\lambda)$ as a power series in λ.
(iii) Use the quadratic approximation of $E(\lambda)=e_{0}+\lambda e_{1}+\lambda^{2} e_{2}+\mathcal{O}\left(\lambda^{3}\right)$ to minimize $E(\lambda)$ for small λ. Compute the minimum of $E(\lambda)$ up to $\mathcal{O}\left(\lambda^{3}\right)$.
(iv) Does this hamiltonian have a bound state? Justify your answer.

Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}\right)(\xi)=\lambda^{-1} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda^{2}}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\lambda^{2} x^{2}}=\frac{\sqrt{\pi}}{\lambda}$ where $\lambda>0$.

Solution:

(i) We first compute the kinetic energy part:

$$
\begin{aligned}
& \int_{\mathbb{R}} \mathrm{d} x\left|\partial_{x} \varphi(x)\right|^{2} \stackrel{[1]}{=} \int_{\mathbb{R}} \mathrm{d} x \frac{\lambda}{\sqrt{\pi}}\left(-\lambda^{2} x \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}\right)^{2}=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} x \lambda^{5} x^{2} \mathrm{e}^{-\lambda^{2} x^{2}} \\
&=\frac{\lambda^{2}}{\sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d}(\lambda x)(\lambda x)^{2} \mathrm{e}^{-(\lambda x)^{2}} \stackrel{[1]}{=} \frac{\lambda^{2}}{\sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} y y \cdot y \mathrm{e}^{-y^{2}} \\
& \stackrel{[1]}{=} \frac{\lambda^{2}}{\sqrt{\pi}}\left[-\frac{1}{2} y \mathrm{e}^{-y^{2}}\right]_{-\infty}^{+\infty}+\frac{\lambda^{2}}{2 \sqrt{\pi}} \int_{\mathbb{R}} \mathrm{d} y \mathrm{e}^{-y^{2}}=\frac{\lambda^{2}}{2 \sqrt{\pi}} \sqrt{\pi} \stackrel{[1]}{=} \frac{\lambda^{2}}{2}
\end{aligned}
$$

The expectation value of the potential energy is

$$
\begin{aligned}
\int_{\mathbb{R}} \mathrm{d} x V(x)\left|\partial_{x} \varphi(x)\right|^{2} \stackrel{[1]}{=}-\frac{1}{\sqrt{\pi}} \int_{0}^{1} \mathrm{~d} x \lambda x \mathrm{e}^{-\lambda^{2} x^{2}} \stackrel{[1]}{=}-\frac{1}{\lambda \sqrt{\pi}} \int_{0}^{1} \mathrm{~d}(\lambda x)(\lambda x) \mathrm{e}^{-(\lambda x)^{2}} \\
\stackrel{[1]}{=}+\frac{1}{\lambda \sqrt{\pi}}\left[\frac{1}{2} \mathrm{e}^{-\lambda^{2} x^{2}}\right]_{0}^{1} \stackrel{[1]}{=} \frac{1}{\lambda 2 \sqrt{\pi}}\left(\mathrm{e}^{-\lambda^{2}}-1\right)
\end{aligned}
$$

So overall, the energy expectation value with respect to φ_{λ} combines to

$$
E(\lambda) \stackrel{[1]}{=} \frac{\lambda^{2}}{2}+\frac{1}{\lambda 2 \sqrt{\pi}}\left(\mathrm{e}^{-\lambda^{2}}-1\right)
$$

(ii) We plug in the exponential series and use that the first term of the series cancels:

$$
\begin{aligned}
E(\lambda) & \stackrel{[1]}{=} \frac{\lambda^{2}}{2}+\frac{1}{\lambda 2 \sqrt{\pi}}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \lambda^{2 n}-1\right) \\
& \stackrel{[1]}{=} \frac{\lambda^{2}}{2}+\frac{1}{2 \sqrt{\pi}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \lambda^{2 n-1} \\
& =\frac{\lambda^{2}}{2}-\frac{\lambda}{2 \sqrt{\pi}}+\mathcal{O}\left(\lambda^{3}\right)
\end{aligned}
$$

(iii) The derivative of E is

$$
\begin{equation*}
E^{\prime}(\lambda)=\lambda-\frac{1}{2 \sqrt{\pi}}+\mathcal{O}\left(\lambda^{2}\right) \stackrel{!}{=} 0 \tag{1}
\end{equation*}
$$

That means the critical point is approximately $\lambda_{\min } \approx \frac{1}{2 \sqrt{\pi}}[1]$. Given that $E^{\prime \prime}(\lambda)=1+\mathcal{O}(\lambda)>$ 0 this point is actually a minimum [1] and the energy at the critical energy is

$$
\begin{equation*}
E\left(\frac{1}{2 \sqrt{\pi}}\right) \approx \frac{1}{8 \pi}-\frac{1}{4 \pi}=-\frac{1}{8 \pi} \tag{1}
\end{equation*}
$$

up to errors of higher order.
(iv) $V \neq 0$ is a non-positive potential in one dimension. Then by Theorem 9.3.7, a bound state exists [1].

6. The spectrum of an operator (5 points)

Let T be a bounded operator on a Hilbert space \mathcal{H}_{1} and $U: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ a unitary between two Hilbert spaces. Show $\sigma(T)=\sigma\left(U T U^{-1}\right)$.

Solution:

The spectrum $\sigma(T)$ is comprised of those $z \in \mathbb{C}$ for which $T-z$ is not invertible [1]. Since

$$
\begin{equation*}
\left(U(T-z) U^{-1}\right)^{-1}=\left(U^{-1}\right)^{-1}(T-z)^{-1} U^{-1}=U(T-z)^{-1} U^{-1} \tag{1}
\end{equation*}
$$

the operator $T-z$ is invertible if and only if $U T U^{-1}-z \stackrel{[1]}{=} U(T-z) U^{-1}$ is invertible [1]. Hence, $\sigma(T)=\sigma\left(U T U^{-1}\right)[1]$.

