	Grade		le
		Ι	I
Last name First name		1	
Student id # Major		2	
		3	
Signature		4	
University of Toronto		5	
Department of Mathematics		6	
Test 3			
Differential Equations of Mathematical Physics			
(APM 351 Y)			
Max Lein		I First correction	
20 March 2014, 09:10–10:50, Sidney Smith Hall, SS 1074		II Second correction	
Remarks: Please verify the completeness of the exam: 6 problems			
Time allotted: 100 minutes			
Allowed aids: none			

Only to be filled out by the instructor/TA:

Left room from to

Handed in early at

Remarks:

1. The framework of quantum mechanics (12 points)

Consider a quantum particle moving in \mathbb{R}^d .

- (i) Give an example of a Schrödinger operator. Explain the physical meaning of each of the terms.
- (ii) State the Schrödinger equation.
- (iii) Give the notion of observable, state and dynamical equation.
- (iv) Show that $H = H^*$ implies $\|e^{-itH}\psi\|^2 = \|\psi\|^2$ for all $t \in \mathbb{R}$.
- (v) Explain the significance of (iv) for the Born rule.

2. The Birman-Schwinger principle (6 points)

Consider the Schrödinger operator $H = -\Delta_x + V$ on \mathbb{R}^d where $V \leq 0$ is a non-positive potential which decays at ∞ , $\lim_{|x|\to\infty} V(x) = 0$.

- (i) Give the Birman-Schwinger operator K_E and state the Birman-Schwinger principle.
- (ii) Give a sufficient condition on K_E for the absence of eigenvalues of H at -E < 0.

3. Green's functions for $-\partial_x^2 + E$ (14 points) Consider the linear operator $L_E := -\partial_x^2 + E$ for E > 0 on \mathbb{R} . Define the function

$$R_E(x) := \frac{\mathrm{e}^{-\sqrt{E}\,|x|}}{2\sqrt{E}}.$$

- (i) Compute $\left(-\partial_x^2+E
 ight)R_E(x)$ in the sense of tempered distributions.
- (ii) Find the Green's function ${\cal G}(x,y)$ to the operator ${\cal L}_E.$
- (iii) Given $\varphi \in L^2(\mathbb{R})$, solve $L_E \psi = \varphi$ for ψ .

4. Symmetric operators (4 points) Show that $H = -\partial_x^2$ is symmetric on

$$\mathcal{D} := \left\{ \psi \in \mathcal{C}^2([0,1]) \mid \varphi(0) = 0 = \varphi(1) \right\} \subset L^2([0,1]).$$

5. **The quantum energy functional (15 points)** Define the average energy

$$\mathcal{E}(\varphi) = \int_{\mathbb{R}} \mathrm{d}x \, \left(\left| \partial_x \varphi(x) \right|^2 + V(x) \left| \varphi(x) \right|^2 \right)$$

associated to the quantum hamiltonian $H=-\partial_x^2+V$ and $\varphi\in\mathcal{S}(\mathbb{R})$ for the potential

$$V(x) = \begin{cases} -x & 0 \le x \le 1\\ 0 & \text{else} \end{cases}.$$
 (1)

Moreover, define the family of scaled Gaußians $\varphi_{\lambda}(x) := \pi^{-1/4} \sqrt{\lambda} e^{-\frac{\lambda^2}{2}x^2}$ for $\lambda > 0$.

- (i) Determine the expected value of the energy $E(\lambda) := \mathcal{E}(\varphi_{\lambda})$.
- (ii) Express $E(\lambda)$ as a power series in λ .
- (iii) Use the quadratic approximation of $E(\lambda) = e_0 + \lambda e_1 + \lambda^2 e_2 + O(\lambda^3)$ to minimize $E(\lambda)$ for small λ . Compute the minimum of $E(\lambda)$ up to $O(\lambda^3)$.
- (iv) Does this hamiltonian have a bound state? Justify your answer.

 $\text{Hint: You may use } \big(\mathcal{F}\mathrm{e}^{-\frac{\lambda^2}{2}x^2}\big)(\xi) = \lambda^{-1}\,\mathrm{e}^{-\frac{\xi^2}{2\lambda^2}} \text{ and } \int_{\mathbb{R}} \mathrm{d}x\,\mathrm{e}^{-\lambda^2x^2} = \frac{\sqrt{\pi}}{\lambda} \text{ where } \lambda > 0.$

6. The spectrum of an operator (5 points) Let T be a bounded operator on a Hilbert space \mathcal{H}_1 and $U : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ a unitary between two Hilbert spaces. Show $\sigma(T) = \sigma(UTU^{-1})$.