

Only to be filled out by the instructor/TA:
Left room
from \qquad to \qquad

Handed in early at \qquad

Remarks:

1. The framework of quantum mechanics (12 points)

Consider a quantum particle moving in \mathbb{R}^{d}.
(i) Give an example of a Schrödinger operator. Explain the physical meaning of each of the terms.
(ii) State the Schrödinger equation.
(iii) Give the notion of observable, state and dynamical equation.
(iv) Show that $H=H^{*}$ implies $\left\|\mathrm{e}^{-\mathrm{i} t H} \psi\right\|^{2}=\|\psi\|^{2}$ for all $t \in \mathbb{R}$.
(v) Explain the significance of (iv) for the Born rule.

2. The Birman-Schwinger principle (6 points)

Consider the Schrödinger operator $H=-\Delta_{x}+V$ on \mathbb{R}^{d} where $V \leq 0$ is a non-positive potential which decays at $\infty, \lim _{|x| \rightarrow \infty} V(x)=0$.
(i) Give the Birman-Schwinger operator K_{E} and state the Birman-Schwinger principle.
(ii) Give a sufficient condition on K_{E} for the absence of eigenvalues of H at $-E<0$.
3. Green's functions for $-\partial_{x}^{2}+E$ (14 points)

Consider the linear operator $L_{E}:=-\partial_{x}^{2}+E$ for $E>0$ on \mathbb{R}. Define the function

$$
R_{E}(x):=\frac{\mathrm{e}^{-\sqrt{E}|x|}}{2 \sqrt{E}} .
$$

(i) Compute $\left(-\partial_{x}^{2}+E\right) R_{E}(x)$ in the sense of tempered distributions.
(ii) Find the Green's function $G(x, y)$ to the operator L_{E}.
(iii) Given $\varphi \in L^{2}(\mathbb{R})$, solve $L_{E} \psi=\varphi$ for ψ.

4. Symmetric operators (4 points)

Show that $H=-\partial_{x}^{2}$ is symmetric on

$$
\mathcal{D}:=\left\{\psi \in \mathcal{C}^{2}([0,1]) \mid \varphi(0)=0=\varphi(1)\right\} \subset L^{2}([0,1]) .
$$

5. The quantum energy functional (15 points)

Define the average energy

$$
\mathcal{E}(\varphi)=\int_{\mathbb{R}} \mathrm{d} x\left(\left|\partial_{x} \varphi(x)\right|^{2}+V(x)|\varphi(x)|^{2}\right)
$$

associated to the quantum hamiltonian $H=-\partial_{x}^{2}+V$ and $\varphi \in \mathcal{S}(\mathbb{R})$ for the potential

$$
V(x)= \begin{cases}-x & 0 \leq x \leq 1 \tag{1}\\ 0 & \text { else }\end{cases}
$$

Moreover, define the family of scaled Gaußians $\varphi_{\lambda}(x):=\pi^{-1 / 4} \sqrt{\lambda} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}$ for $\lambda>0$.
(i) Determine the expected value of the energy $E(\lambda):=\mathcal{E}\left(\varphi_{\lambda}\right)$.
(ii) Express $E(\lambda)$ as a power series in λ.
(iii) Use the quadratic approximation of $E(\lambda)=e_{0}+\lambda e_{1}+\lambda^{2} e_{2}+\mathcal{O}\left(\lambda^{3}\right)$ to minimize $E(\lambda)$ for small λ. Compute the minimum of $E(\lambda)$ up to $\mathcal{O}\left(\lambda^{3}\right)$.
(iv) Does this hamiltonian have a bound state? Justify your answer.

Hint: You may use $\left(\mathcal{F} \mathrm{e}^{-\frac{\lambda^{2}}{2} x^{2}}\right)(\xi)=\lambda^{-1} \mathrm{e}^{-\frac{\xi^{2}}{2 \lambda^{2}}}$ and $\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-\lambda^{2} x^{2}}=\frac{\sqrt{\pi}}{\lambda}$ where $\lambda>0$.
6. The spectrum of an operator (5 points)

Let T be a bounded operator on a Hilbert space \mathcal{H}_{1} and $U: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ a unitary between two Hilbert spaces. Show $\sigma(T)=\sigma\left(U T U^{-1}\right)$.

