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Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...
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Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)
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Topological Effects: Phenomenological Similarities

e
Coupled Oscillators

Quantum

Periodic structure -+ bulk band gap
Breaking of time-reversal symmetries
Unidirectional edge modes

Robust under perturbations
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Material vs. Crystallographic Symmetries

Material Crystallographic
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o Properties of and relations
between ¢, uand x
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Material vs. Crystallographic Symmetries

Material

=7
X

o Properties of and relations
between ¢, uand x

o Example:

ve ) e

Only these are considered here!
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Two Main Questions for Today

@ Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?

@ Are there other topological effects?

~» Topological classification of electromagnetic media

Summary
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Strategy to Obtain Classification

@ Rewrite Maxwell’s equations in the form of a Schrodinger
equation
(De Nittis & L., The Schrédinger Formalism of Electromagnetism and Other
Classical Waves (2017))

@ Apply Cartan-Altland-Zirnbauer classification scheme of
(quantum) topological insulators
(De Nittis & L., Symmetry Classification of Topological Photonic Crystals (2017))
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Setting: Electromagnetic Waves in Linear Medium

Johnson & Joannopoulos (2004)

Assumption (Material weights)

)
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o = (S, )

x(@)® p(z)

dispersion-free

lossless

(W (x)* = W (x) hermitian)
not a negative or 0 index
material

(the eigenvalues of W () are
positive and do not reach 0)
periodic

(W(x+ ) = W(x) forall
lattice vectors )
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Making Quantum-Wave Analogies Rigorous

Quantum Mechanics
i0, 0 =HY¥
H = (—iV—A)2+V

(Schrodinger equation)

Classical Electromagnetism

(50) o (5) - (G95%)

(dynamical equations)

(v)(50) (8) =)

(constraint equation)

@ States describe the configuration of the system at a given

time.

@ Observables represent experimentally measurable quantities.

@ Dynamics explain how states or observables evolve over time.
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Recap: States and Dynamics in Quantum Mechanics

States and Dynamics
@ A selfadjoint Hamilton operator, e. g.

H= A (-iV—A)°+V
H=mp+ (-iV—A4) - a+V

@ AHilbert space 7 and states are represented by its elements,

e.g. L2 (R, C™) with (6.4) = [ deo(o) - v(a).
R4
@ Dynamics given by the Schrédinger equation

i0,1(t) = Hip(t), P(0)=¢
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Schroédinger Formalism of Electromagnetism
States and Dynamics
@ “Hamilton” operator M, = W~™*Rot| = M," where

(0 4iv*
ROt_(—iVX 0)

@ Hilbert space 7, = {\I/ € L*(R®,C%) | Visw >0 state}
with energy scalar product
(D, \I/>W = / dz®(z) - W(x)¥(x)
R3
@ Dynamics given by Schrédinger equation
10,V (t) =M,V (t), U (0)=P.(EH) e J,
@ Real-valuedness of physical solutions:

(E(t), H(1)) = 2Re U (1)



Schrodinger Formalism Topological Classification Comparison with Literature Summary

Representing Real Fields as Complex Waves

Generalize idea from in vacuo Maxwell equations
Real solutions = linear combinations of complex waves of +w(+k)

cos(k - o — wt) = %(eﬂ(km—tw) 4 e—i(k.x—tw)> — Re (eti(ke-tw))

sin(k -x — wt) = %(eﬂ(k-wftw) _ efi(k:-zftw)> —Im (eJri(k-a:ftw))
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Representing Real Fields as Complex Waves

Generalize idea from in vacuo Maxwell equations
Real solutions = linear combinations of complex waves of +w(+k)

cos(k - o — wt) = %(eﬁ(km—tw) 4 e—i(k-m—tw)) — Re (eti(ke-tw))
sin(k -x — wt) = %(eﬂ(k-wftw) _ efi(k:-zftw)> —Im <e+i(k<a:ftw))
Idea

Uniquely and systematically represent real, transversal fields as
complex waves of w > 0

(EEH) =W, +¥ —2ReV

Information contained in ¥_ = U, is redundant
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Fundamental Equations

Maxwell’s equations in media
@ Maxwell’s equations

9 (D +V x H JD .

a\B) ~\_vxe) \yB (dynamical eqns.)
. D

(g _ g) = (I;B> (constraint eqns.)

@ Constitutive relations

@ Conservation of charge

V-J'+0,p0=0 t=DB

Summary
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Fundamental Equations

Maxwell’s equations in media
@ Maxwell’s equations

Q Dy _ (+VxH (dynamical egns.)
ot \B) "\ —vxE y ans.

Vv-D) _ (0 (constraint eqns.)
Vv-B) \0 "

@ Constitutive relations
D E
(s)="(3)

@ Conservation of charge ~» neglect sources for simplicity

Summary



Schrodinger Formalism Topological Classification Comparison with Literature Summary

Fundamental Equations

Maxwell’s equations in media

@ Maxwell’s equations

Q Dy _ (+V xH (dynamical egns.)
ot \B) "\ —vxE y ans.

V-D 0 .
(V ' B) = (O) (constraint egns.)

@ Constitutive relations for a linear, dispersive medium

(5833): /; dsW(t — s, ) (:ii?))

@ Conservation of charge
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Fundamental Equations

Maxwell’s equations in media

@ Maxwell’s equations

Q DY _ (+V xH (dynamical egns.)
ot \B)  \—-V xE y ans.

V-D 0 .
(V . B) = (O) (constraint egns.)

@ Constitutive relations
(D(t),B(t)) = (W = (E,H))(¢)

@ Conservation of charge

Summary
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Schrodinger Formalism Topological Classification

Heuristically Neglecting Dispersion in Maxwell’s Equations

i 2W * W(t) = Rot U(¢)
@ Apply inverse Fourier transform in
time to go from time-dependent to

3~—1
frequency-dependent equations.

wW (w) ’\17@) = Rot ¥ (w)
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Heuristically Neglecting Dispersion in Maxwell’s Equations

3~—1
W =0 _ T @ Approximate material weights
wW(w) ¥(w) = Rot ¥(w) TV ) e T (g W, for

frequencies +w ~ +w.

~ +w, and —w,, contributions
necessary to reconstruct real

+ wW (dwg) ¥(4+w) = Rot ¥(+w) solutions.
F
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Heuristically Neglecting Dispersion in Maxwell’s Equations

+ wW(twg) ¥(+w) = Rot ¥ (Fw)

@ Undo Fourier transform to obtain
F dynamical equations in the
absence of dispersion.
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Dispersion-Free Maxwell Equations for Gyrotropic Media
Real solutions linear combination of complex +w waves:
(E;H) =0, + 7 =2ReW,
= Pair of equations
{W+i8t‘ll+ = Rot ¥
DivIV, ¥, =0

ol W_i0,¥ = RotW_
- ' DivIV. U =0
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Dispersion-Free Maxwell Equations for Gyrotropic Media
Real solutions linear combination of complex 4+w waves:
(E,H) =W, +¥_ =2ReV,

= Pair of equations

_ W, 0,0, = Rot ¥,
w=0: { Div IV, U, =0

, T, i0,¥ = RotW
W< { DivIV, U =0
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Dispersion-Free Maxwell Equations for Gyrotropic Media
Real solutions linear combination of complex +w waves:
(E,H) = 2Re U,

= Pair of equations

el {W+ i0,¥, =Rot ¥,

DivIV, U, =0
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Schrodinger Formalism of Maxwell’s Equations

Theorem (De Nittis & L. (2017))

Real transversal states Complex states with w > 0
(E,H) = 2Re U/, . V=P, (EH)

e X\ O (VE) _ (+VxyP M =W tRot|, o= MW
(x*u) &(wf) - (—waf> i0,¥ =MV

= {\p € L2(R3,C0) | Wisw > Ostate}

(2, \IJ>W = , dz®(z) - W(x)¥(x)
Energy scalar product

(De Nittis & L., The Schrédinger Formalism of
Electromagnetism and Other Classical Waves (2017))
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Schroédinger Formalism of Electromagnetism

States and Dynamics
@ “Hamilton” operator M/, =W ~'Rot| _ forw >0
w

@ Hilbert space #, C L%,(R3,CF)
@ Dynamics given by Schrédinger equation

10,V (t) =M,V (t), v (0)=P.(EH)ec J,
@ Real-valuedness of physical solutions:
(E(),H(1)) = 2Re U ()

Note
This also applies to gyrotropic materials where W = (. %) # W.
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Application: Derivation of Ray Optics Equations

e x| O (vF)_ (-VxvP\)
X ) ot \ W) \+V xpH
(dynamical equation) {7‘ =4V Q+0(N)

D60 | e
v )\ ) \wH )~ \o

> ———
(ray optics equations)
(constraint equation)

Setting
o Perturbation parameter A < 1
o Slowly varying electric permittivity e = £(\) and magnetic
permeability ;. = pu(\) are 3 x 3-matrix-valued
0 ¢, i and x: periodic to “leading order”
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Application: Derivation of Ray Optics Equations

(o) o (Vi) = (5 20
X' p) ot \ W) T \+V x pH
(dynamical equation)
(2) o) () = (0
V) \x* 1)\ 0
Theorem (De Nittis & L. (2016))

(constraint equation)

)

>

=4V Q4+ O(N)
k= —V,2+ 0

(ray optics equations)

Akl
—_—

o Qr,k) = 7(r)w,, (k) + O(X) and eom computed explicitly

o Depending on type of observables: Berry curvature enters

(De Nittis & L., Derivation of Ray Optics Equations in Photonic Crystals Via a
Semiclassical Limit, Ann. Henri Poincaré 18, Issue 5, 2017)
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Classification of Topological Insulators

@ Topological class <— Discrete symmetries of M

Phases inside each Labeled by
topological class topological invariants

@ Bulk-edge correspondences

physical topological
s . .
observable invariant
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Classification of Topological Insulators

@ Topological class «— Discrete symmetries of M

Phases inside each Labeled by
topological class topological invariants
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No Additional Symmetries Assumption

Assumption

Apart from those below the system (i. e. the Maxwell operator M) has
no additional unitary, commuting symmetries.

Otherwise
@ Block-decompose according to unitary, commuting symmetry.
@ Repeat until no extraneous symmetries are left.
@ Analyze each block separately with the tools used here.
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Symmetries Used in Classification

Example

re=one: (8 (7 %)e(E)-(75)

Pauli matrix o5 = (3 9 ) in electro-magnetic splitting
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Symmetries Used in Classification

Unitary symmetries Antiunitary symmetries

U,=0,01, n=123 T,=(,®1)C, n=0,1,2,3

o (C'is complex conjugation
0 0y = 1 theidentity
: 0 +iV*
0 04,04 and o4 are the Pauli Rot = v~ 0
matrices in the E-H splitting
o U, and T, (anti)commute =028V
with free Maxwell operator
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Admissible Symmetries

3
£ X
W=1", = 0, Quw,
(5 Y)-%

n=0

wheree.g.wy = (e + p) andwz = (e — p)

Summary
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Admissible Symmetries

W:(X u) Za Rw,

Symmetry V = | wy = | wy = | Wy = | wg = | Symmetry Type
T, =(c;,®1)C | Rewy | Rew; | Rew, | ilmw, +TR

Uy,=0,01 Wy 0 W,y 0 ordinary
T3=(03®1)C | Rew, | ilmw,; | Rew, | Rews, +TR

Admissibility Conditions
O Reality of (E,H) < w > Ofields—w > Ofields = VM =MV
@ Compatibility with energy scalar product = VW =WV

= exclude anticommuting symmetries

Summary
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Admissible Symmetries

W=<X u) Za Qw,

Symmetry V = | wy = | wy = | Wy = | Wy = | Symmetry Type

T, =(c,®1)C | Rewy, | Rew; | Rew, | ilmw;, +TR

Ty =(0301)C | Rew, | ilmw,; | Rew, | Rews; +TR

Admissibility Conditions
= exclude anticommuting symmetries

Relevance to Classification
= exclude unitary, commuting symmetries
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic

W=(§u)=(

Ty =(0301)C

om|
Tlo
N—

Dual-symmetric

W52 = (& %)

T, =(0,91)C, T3 =(03®1)C

Gyrotropic

W=(55)#(

No symmetries

o
Tlo
SN~—

“EH-symmetric”

W=(5%)=(

x| of

T, =(0,®1)C

o] X|
SN—

Summary
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic Gyrotropic

Class Al Class A (Quantum Hall Class)
Realized, e. g. dielectrics Realized, e. g. YIG for microwaves
Dual-symmetric “EH-symmetric”

Two +TR = 2 x Class Al Class Al

Realized, e. g. vacuum and YIG Realized?

[Khanikaev et al, Nature 12 (2013)] (No example known to us.)

4 different topological classes of EM media
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))
Gyrotropic
Class A (Quantum Hall Class)
Realized, e. g. YIG for microwaves

Only one is topologically non-trivial ind < 3
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Medium CAZ Class Dimension d =
1 2 3 4
Gyrotropic A 0 VA 73 | @7
Non-gyrotropic Al 0 0 0 Z
EH-symmetric Al 0 0 0 Z
Dual-symmetric | 2 x Al 0 0 0 707

(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Medium CAZ Class Dimension d =
1 2 3 4
Gyrotropic A VA 73 77
Non-gyrotropic Al VA
EH-symmetric Al VA
Dual-symmetric 2 x Al 707

(Classification of Bloch vector bundles with symmetries.)
First and second Chern numbers
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Consequences of the Classification Result

@ Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class Al

@ Are there other topological effects?
Answer: In d < 3 (unfortunately) no!
(E. g. no analog of the Quantum Spin Hall Effect (class All))

Summary
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Consequences of the Classification Result

@ Is the Quantum Hall Effect for Light really analogous
to the Quantum Hall Effect?
Answer: Yes! Both systems are in Class Al

@ Are there other topological effects?
Answer: In d < 3 (unfortunately) no!

In d = 4: Effects due to second Chern number or numbers?
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Comparison with Other Works

Unidirectional Modes of Fixed
(Pseudo)spin
@ Works of Xiao Hu et al and
Aleksander Khanikaev et al

@ Pseudospin degree of freedom in a
time-reversal-symmetric medium

O “Hamiltonian” aka}VIMagwell
— T
operator M = ( 9 ML) hasa
block decomposition
O Topological classification must be
appliedto M.,

O M, of (pseudo) spin 1/] may not
possess time-reversal symmetry
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Comparison with Other Works

Wu & Hu (2015)

Qo
Q

Edge modes topological

Pseudospin degree of freedom in a
time-reversal-symmetric medium

Time-reversal symmetry

T, + T, @ T, not blockdiagonal
= M, class A (no symmetry)
Chern numbers C, = —C| # 0
possible

Not in contradiction, edge modes
comein T / | pairs

Topologically protected against
perturbations which preserve T
symmetry and honeycomb
structure

Wu & Hu (2015)
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Comparison with Other Works

Khanikaev et al (2013)

@ Edge modes not topological

O Dual-symmetric medium

O T, =T8T and
T, = (T;) @ (—iT))
blockdiagonal and define
equivalent symmetrieson 1 / |
subspaces

O Medium topologically trivial

O Boundary modes for fixed spin
come in pairs (located at +k)
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Summary

o While Schrédinger formalism for non-gyrotropic media is
well-known (1920s for vacuum, <1960s for non-gyrotropic
media), for gyrotropic media it is new

o Schrodinger formalism = first order in time!
= Systematic adaptation of quantum techniques to EM

o Restricting to w > 0 is conceptually essential, not just a
technical footnote

o Apart from gyrotropic media there are no other
topologically non-trivial electromagnetic media

o Ideas apply also to many other classical wave equations
(e. g. certain acoustic waves)
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Open Problems

o Give a mathematical proof of Haldane’s photonic bulk-edge
correspondence conjecture
(dependence on boundary conditions, etc.)

o Non-linear effects
(combining results by Babin & Figotin with De Nittis & L.)

o Application to other classical waves
o Crystallographic symmetries



Thank you for your attention!
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