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Goal of Today’s Talk

Physical Effect «+— Abstract Mathematics

o Elucidate what “topological” means in the context of physics
o When is topology useful?

@ Meaning beyond a buzzword

o Relation of topology to symmetries in physics
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The Quantum Hall Effect: the Prototypical System

physical observable «— abstract mathematics

Quantum Hall Effect

Ty ~ e2 _ e2 ~ Ty
Tpui(t) ~ & Chyy = %Chedge ~ Uedge<t>

transverse conductivity = Chern #

1
Chbulk/edge = o / dk Quui/edge (k) € Z
5

e Edge modes in spectral gaps

e Signed # edge channels = Ch( Proi)
e Edge modes unidirectional

e Robust against disorder

Two Nobel Prizes

1980 for experiment: von Klitzing

2016 for theory: Thouless

kQ

electrons localized in orbits (insulating)
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Topological Insulators for Other Waves: Experiments
Mechanical Acoustic
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Other Effects and Systems Which Are Called Topological

Topological ...

o insulators

o edge or boundary modes
o superconductors

o photonic crystals

o domain walls
o phase transitions
o skyrmions

O 600



Basics of Topology Groups & Topology Topological Invariants QHE for Light QSHE for Light Summary

Characteristic Features of Topological Effects

Robustness against perturbations
Related to existence or breaking of certain symmetries
Relation of physical effect to “topological invariants/numbers”

© © o0 o

Invariants cannot change when system is deformed
continuously unless either gap closes or
localization-delocalization transition happens
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When Is a Physical Effect Topological?

Quantum Hall Effect vs. Quantum Spin Hall Effect for Light

G o) =528 (5m)= (o)

(dynamical equation) (constraint equation)
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When Is a Physical Effect Topological?
“Quantum Hall Effect”
2 A, —~ N

“Quantum Spin Hall Effect”
X JESOO
TR . P
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Negative 0 Positive
Joannopoulos, Soljaci¢ et al (2009)

Bliokh, Smirnova & Nori (2015)

Predicted theoretically by Bliokh,

Smirnova & Nori (2015)
Predicted theoretically by

Raghu & Haldane (2005)
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Quantum Hall Effect vs. Quantum Spin Hall Effect for Light

e 0\ 0 (E\ _(-V xH V-€E
0 p) ot\H/  \+V xE
(dynamical equation)

v )~ (o)

(constraint equation)

Which of the two effects is topological?

In both cases, the authors got it right, though.
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When Is a Physical Effect Topological?

In mathematical terms

What is the mathematical structure whose topology is linked to
physical effects?
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Answer & Explanation
At the end of the talk
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How to Axiomatize the Essentials?

Setting here: Quantum Mechanics

@ Hamiltonian operator H = H* so that the Fermi energy
E; ¢ spec(H) liesin a spectral gap

@ Hilbert space $

@ Schrodinger equation (dynamics)

i0,4(t) = Hip(t), P0)=¢ €

@ State P = 1<—OO,EF](H)
(all energies up the Fermi energy are occupied)
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How to Axiomatize the Essentials?

Question: Existence of a Homotopy

Given two quantum Hamiltonians H, and H, does there exist a
continuous path [0, 1] 5 s — H(s) (a homotopy) so that

@ H(0) = Hyand H(1) = H,,
@ H(s) has all the same symmetries as H, and H, (if any), and
@ forall s € [0, 1] the Fermi energy E lies in a spectral gap
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How to Axiomatize the Essentials?

Question: Existence of a Homotopy

Given two quantum Hamiltonians H, and H, does there exist a
continuous path [0, 1] 5 s — H(s) (a homotopy) so that

@ H()=Hyand H(1) = Hy,
@ H(s) has all the same symmetries as H, and H, (if any), and
@ forall s € [0, 1] the Fermi energy Ex lies in a spectral gap

Relevance

If H, and H, are connected by a homotopy H (s), then for any
topological invariant T' we expect

T(Hy) = T<H(S)) =T(H,).
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Topology & Continuity

Definition (Topological Space)
Let X beanysetand 7 = {U; C X}jg a collection of subsets.
Then (X, T) is a topological space if and only if:

@0, XeT

@ For any (finite or infinite) subcollection 7 C J the family
satisfies|J _, U, € T.
jeg I

@ For any finite collection J C J the intersection satisfies
ﬂjej U,e7.
The U are called open sets, and T is said to give a topology to X.
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Topology & Continuity

Definition (Continuous function)

Let X and Y be topological spaces. Amap f: X — Y'is
continuous if the preimage of an open set in Y is an open setin X.

Definition (Homeomorphism)

Amap f: X — Y between topological spaces is a
homeomorphism if and only if

@ fiscontinuous and
@ itsinverse f~! exists and is continuous as well.
In that case X and Y are called homeomorphic.

If X and Y are homeomorphic, then Y can be thought of as being
obtained from X by deformation without cutting, tearing or gluing.



Basics of Topology Groups & Topology Topological Invariants QHE for Light QSHE for Light Summary

Topology & Continuity

Three-line summary
o Topology gives rise to the notion of continuity
o Different choices of topology, different types of continuity

o In topology homeomorphic spaces are usually considered to

be “one and the same’, e. g. the circle is homeomorphic to a
square and a triangle
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Homotopy

Definition (Homotopy)

Two maps fy, f1 : X — Y are said to be homotopic if there exists
a continuous map g : [0, 1] x X — Y such that g(0) = f, and
g(1) = f;.Inthat case we call f, and f; homotopic.

Definition (Homotopy equivalence)

Two topological spaces X and Y are called homotopically
equivalent if there exist continuous maps f : X — Y and
g:Y — X sothat f o gis homotopictoidyx and go fis
homotopic to idy.



Basics of Topology Groups & Topology Topological Invariants QHE for Light QSHE for Light Summary

Homotopy

o Homotopy equivalence of spaces is weaker than
homeomorphy, i. e. there are examples where X and Y are
homotopically equivalent, but not homeomorphic.

o If X and Y are homotopically equivalent, then one can think of

obtaining Y from X by deforming it without gluing, cutting
and tearing, and in addition to blowing it up or contracting it.



@ Groups & Topology
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Quantifying Topology

How to decide whether two spaces are equivalent?
Very difficult problem, depends on all of the details.
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Quantifying Topology

How to decide whether two spaces are not equivalent?
Much easier question.
-» Use groups associated to topological spaces.
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The Fundamental Group

Definition (The Fundamental group)

Let X be a topological space, and z, € X a point. Then the
fundamental group 7, (X, z) consists of homotopy classes of maps
f:10,1] — X with f(0) = z5 = f(1).
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An Example from Physics: A Simple Model for Graphene
q3 14+q18: +Q252)
H 9 9 = * *
(41,92, 93) <1+q151 gy g
q1, g2 hopping parameters, g5 stagger potential
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An Example from Physics: A Simple Model for Graphene

Periodic Deformations

No stagger potential (g; = 0) With stagger potential (o< g5)
] s
: s
: & o
1 7
'bl ‘ 2: No Gap
O Suntetonintstininteiurins TR A I RN (- X
£
0 1, ; 2 [
A
0 -1
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An Example from Physics: A Simple Model for Graphene

qs3 14q181 + 425,
H =
<q17QQ7QS) (1+Q15§+QQ5§ _q3

q1. 95 hopping parameters, g5 stagger potential

To be continued ...
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Computable But Not Algorithmically Computable

o Solution to classification problem seems clear: compute
homotopy classes for Hamiltonians

o Unfortunately, homotopy classes which make up e. g. 7, (X)
are not algorithmically computable

o Previous example: computation by “eyeballs”

o More difficult in complicated, possibly infinite-dimensional
spaces!

Solution: Compute other groups associated to topological spaces
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Algorithmically Computable Criteria

o Leads to e.g. K-groups and cohomology groups
o Too complicated to explain in detail here

o Groups algorithmically computable, and algorithms known
and (in some cases) implemented numerically

o Side note: Same mathematics gives very powerful for
topological data analysis (rigorous (!) approach to analysis of
e. g. granular matter & glasses)

o Does not necessarily answer the question:
What homotopy class does a system belong to?



(3 Topological Invariants
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Idea of Topological Invariant

o Tis a map from a class of spaces (e. g. vector bundles) to
typically Z, Z mod p
o T explicitly computable

Prototypical Theorem

Let X and Y be two topological spaces. If T'(X) # T'(Y'), then X
and Y are not homeomorphic.
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The Genus

Summary

Genus g is the “number of holes”

oo
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The Genus

Theorem (Gauf3-Bonnet)

Let X be a two-dimensional, compact, orientable manifold without
boundary, and K its GaulSian curvature. Then we have

/ dAK =4n(1—g).
e

Topology +— geometry of 2d manifolds, g computable!

g=1 g=2
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Chern Numbers and Vector Bundles

Complex Vector Bundles

Suppose $(x) is a family of complex Hilbert spaces of the same
dimension that depend continuously on x € X. Then the vector
bundle of rank m = dim $(x)

& |_|S’_’)(:L‘)HX

xeX

is the space obtained by “gluing together” the (x) over X.
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Chern Numbers and Vector Bundles

Example (The Bloch Bundle)

Let P = 1_, g, (H) be the Fermi projection of a periodic

Hamiltonian H — o (—1AV)? + Vi

o H and P admit a Bloch-Floquet decomposition (band picture)

o H(k)and P(k) depend analytically on Bloch momentum k
(gap condition!)

o Brillouin zone B =~ TTd

o Bloch bundle &g (P |_| ran P(k) — T¢
keTd
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Chern Numbers and Vector Bundles

In analogy to the genus: Chern numbers distinguish between
inequivalent vector bundles
Theorem (Prototypical Statement)

If €, and &, are two vector bundles over T¢ of the same rank. Then
Ch;(&1) # Ch;(&5) implies £, and &, are not equivalent.
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Chern Numbers and Vector Bundles

In analogy to the genus: Chern numbers distinguish between
inequivalent vector bundles

Theorem (Classifciation of Complex Vector Bundles)

If €, and &, are two vector bundles over T of the same rank, and
d=1,2,3,4. £, areequivalent &, if and only if all Chern numbers of
the two bundles agree.
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Chern Numbers and Vector Bundles

In analogy to the genus: Chern numbers distinguish between
inequivalent vector bundles

Formula for (First) Chern Numbers

Ch,,(P) = 2i die; Ay Tr(P(K) [0 P(K) , 03, P(k)] )

T Jr2
Tﬂ



Basics of Topology Groups & Topology Topological Invariants QHE for Light QSHE for Light Summary

Example Continued: Periodically Deformed Graphene

Periodic deformation = loop ¢(t) in parameter space

. . qs(t) L+q(t)s; +qo(t) s,
H®) = H(a®) = (1 L))+ ga(1)5) “gs(0) )

q1, g hopping parameters, g5 stagger potential

Homotopy-invariance of Chern numbers
If g(t) and ¢/ (t) (and thus, H (t) and H’(t)) are in the same
homotopy class, then

Ch,(P) = Ch,(P’)

J

where P =1 g (H)and P’ =1, g (H').
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Example Continued: Periodically Deformed Graphene

Periodic deformation = loop ¢(t) in parameter space

- B (t) 141 (t)81 +ga(t) 52
H(t)=H(q(t)) = (1 +q (t)q;i + g5 (t) % ' —Q3(t)q )

q1. ¢o hopping parameters, g5 stagger potential

De Nittis-L. (2011)

@ Compute Chern numbers for fundamental loops 1, and 7,
which generate 7, (X).

@ Determine homotopy class of ¢(t) 4 [¢(t)] = (nq,n5).
@ Charge accumulated over one period in spatial direction j

AC =n,Chy;(n) +nyChy ()
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Example Continued: Periodically Deformed Graphene

Periodic deformation = loop ¢(t¢) in parameter space

- B (t) L+q1(t)s1 +go(t)s
H(t) = H(q(t)) = <1+q1(t)q§§+q2(t>5g ' —q3<t)q2 2>

a2 a3

T T No Gap

q ol
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Example Continued: Periodically Deformed Graphene

Periodic deformation = loop ¢(t) in parameter space

- B (t) 141 (t)81 +ga(t) 52
H(t)=H(q(t)) = (1 +q (t)q;i + g5 (t) % ' —Q3(t)q )

q1. ¢o hopping parameters, g5 stagger potential

De Nittis-L. (2011)

@ Compute Chern numbers for fundamental loops 1, and 7,
which generate 7, (X).

@ Determine homotopy class of ¢(t) 4 [¢(t)] = (nq,n5).
@ Charge accumulated over one period in spatial direction j

AC =n,Chy;(n) +nyChy ()



(@ QHE for Light

A



Basics of Topology Groups & Topology Topological Invariants QHE for Light QSHE for Light Summary

The Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

GG - 0

symmetry breaking

e

[

E
Negative 0 Positive
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Schroédinger Formalism of Electromagnetism

(6m) 2 (5)-G3: } — { 0,0 = MW

dynamical Maxwell equations “Schrédinger-type equation”

U(t) = (E(t),H(t)) € H = {\Il € L%, (R3,C) | \I/transversal}

w=0) (e ") o

=W-1 =Rot
Maxwell equations Adaptation of techniques
= =  from quantum mechanics
Maxwell operator M = M* to electromagnetism
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Topological Insulators for Light

Predicted theoretically by Raghu & Haldane (2005) ...

R Ewl = L

symmetry breaking

e

[

E
Negative 0 Positive
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Topological Insulators for Light

... and realized experimentally by Joannopoulos et al (2009)

a N
Scatterer of Antenna B
variable length ,

CES waveguide

Transmission (dB)

n
2.0 a5 a0 a5
Frequency (GHz)

u]

8]
I

u
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Topological Insulators for Other Waves: Experiments
Mechanical Acoustic

”Ezf - )
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Shared Mathematical Structure of these Wave Equations

Classical electromagnetism

(6 0) 8 (E) — (WxH) _ (a) Characteristics
0wn/ 9t \H) = \+V xE 0 . leadi d
oot /o e Linear (to leading order)
(v;m) - <0> e First order in time
e Can be rewritten in form of
Spin waves Schrodinger equation
; _ B(k)
i2(f*) = a3 Hk) (") Other examples
Plasmons, magnetoplasmons,
Transverse acoustic waves van Alvén waves, etc.

F ()= ooz ™) ()
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Explanation via Bulk-Boundary Correspondences
Obulk<t) ~ Touk = Tedge ~ Oedge@)

concrete physics <— abstract mathematics

@ Provide a first-principles derivation of
effective dynamics in photonic crystals and
periodic waveguide arrays.

De Nittis & L., Commun. Math. Phys. 332, 221-260, 2014

@ Understand the roles symmetries and various
waveguide geometries play.
De Nittis & L., Annals of Physics 350, 568-587, 2014

@ Find bulk-edge correspondences in periodic
light conductors, i. e. relations between
dynamical and topological quantities.

In progress

u]
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The Quantum Spin Hall Effect for Light

Locking of Surface Mode’s
Transverse Momentum to Spin

o Due to conservation of total
angular momentum

o Surface modes necessarily
linearly polarized
o Conversion of spin to orbital

angular momentum of the
surface wave

@ No topological origin

o Authors made the correct
claim

u]
8]
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Summary

o The relationship between topology and physics has to be
made concrete on a case-by-case basis.

o Identification of the mathematical object whose topology is
relevant (e. g. vector bundles)

o The methods with which the topology is analyzed lead to
algorithmically computable criteria.
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Max's Criteria

When Do | Call a Physical Effect “Topological”?

o When the object whose topology is relevant has been
identified.

o When topology helps to understand the effect’s mechanism.

In case of doubt: ask a mathematical physicists you trust. (We are
happy whenever we find applications to real physical effects!)
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Thank you for your attention!
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